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Agenda

● QUIC Protocol Overview
○ Motivation
○ Features overview

● Pluginized QUIC
○ Motivation
○ Plugins architecture
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What is QUIC? (1/2)

● New transport protocol, secure and reliable

● UDP-based
○ Because UDP is well-supported on the Internet

● Initially designed by Google
○ Deployed in 2014
○ Seek to replace the HTTPS stack
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What is QUIC? (2/2)

● Google reports better quality of experience
○ Improved YouTube rebuffer rate by 15-18%
○ Improved Google search latency by 3.6-8%

● IETF working group was formed in 2016
○ Current draft: 34
○ RFC expected at the end of 2021
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The story of the web (1/2)

● Layered design
○ End-to-end principle
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The story of the web (2/2)

● Security is needed
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Drawbacks: Handshake latency (1/2)

● At least 2-RTTs before useful data can be sent
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Drawbacks: Handshake latency (2/2)

● At least 2-RTTs before useful data can be sent

● Demands on reducing web latency
○ Web as a platform for applications
○ Many objects are needed to be fetched
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Drawbacks: TCP head-of-line blocking

● HTTP/1.0: Each HTTP request requires a TCP connection.

● HTTP/1.1: Introduced persistent connection and pipelining.

● HTTP/2: Multiple HTTP requests on the same TCP connection.
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Drawbacks: Protocol ossification

● Middleboxes: “intermediary devices performing functions other than the normal” (RFC 3234)

○ NAT routers: rewrite transport and IP headers
○ Firewalls: block unknown traffic for security reasons
○ Load balancers, Proxies, …
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RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3



Drawbacks: Slow deployment

● TCP is implemented in the OS kernel
○ It takes time to make changes and upgrade systems

● Upgrade cycles
○ OS: order of months-years
○ Browsers: order of weeks (Chrome: 6 weeks)
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Drawbacks: Slow deployment

● TCP is implemented in the OS kernel
○ It takes time to make changes and upgrade systems

● Upgrade cycles
○ OS: order of months-years
○ Browsers: order of weeks (Chrome: 6 weeks)

● A UDP-based protocol is implemented in userspace
○ More flexible
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QUIC Overview
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Introducing QUIC
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Overview: Connection establishment (1/3)

Initial connection
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Overview: Connection establishment (2/3)

Subsequent connection
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Overview: Connection establishment (3/3)

● Connection IDs are exchanged during handshake.
○ Each endpoint chooses a connection ID (up to 20 bytes).
○ Packets specify the other endpoint’s CID.

● QUIC uses connection ID to identify a connection.
○ Unlike TCP which uses a 5-tuple (src_ip, src_port, dst_ip, dst_port, transport).

● Transport options exchanged in quic_transport_parameters TLS extension.
○ E.g. flow control limits, max number of streams, max idle time.
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CID: 
d09d13e12c698b7fb21d
c45e75a22a3b7af8f8e3



Overview: Connection migration

● Connection IDs gives more flexibility.

● Client can change IP address and keep the 
connection open.

● Resilient to NAT timeout and rebinding.
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DCID: b120a815

NEW_CONNECTION_ID:4a6a99bb
NEW_CONNECTION_ID:f78936f8
NEW_CONNECTION_ID:c4f8457f

...

DCID: 4a6a99bb



Overview: Stream multiplexing (1/2)

● Multiple streams within a single QUIC connection.

● A stream provides ordered delivery.
○ Similar to a single TCP connection.

● Identified by stream ID.
○ Odd IDs - client initiated; Even IDs - server initiated.
○ Can be unidirectional or bidirectional.
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Overview: Stream multiplexing (2/2)

● QUIC packet contains multiple frames.
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+-+-+-+-+-+-+--+
|0|1|S|R|R|K|PP|
+-+-+-+-+-+-+--+-----------------------+
| Destination Connection ID (0..160) ...
+--------------------------------------+
| Packet Number (8/16/24/32)         ...
+--------------------------------------+
| Protected Payload (*)              ...       
+--------------------------------------+

+---------+
| Frame 1 |
+---------+
    ...
+---------+
| Frame N |
+---------+

+-------------+
| Stream ID ...
+-------------+
| [Offset]  ...
+-------------+
| [Length]  ...
+-------------+
| Data      ...
+-------------+

● Each frame has a type.
○ ACK, CRYPTO, STREAM, MAX_DATA, MAX_STREAM_DATA, ...



Overview: Authentication and encryption

TCP/TLS/HTTP
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Overview: Authentication and encryption

TCP/TLS/HTTP
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Overview: Loss recovery (1/2)

● QUIC uses monotonically increasing packet numbers
○ Unlike TCP which uses sequence numbers

● Packet numbers specify transmission order
○ Not delivery order

● Remedies TCP’s retransmission ambiguity [3]
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Overview: Loss recovery (2/2)

● No retransmission of the same QUIC packet
○ Lost frames are sent in a new packet
○ Gives flexibility to the packet scheduler

● Streams are independent w.r.t. ordering/retransmission
○ Addresses head-of-line blocking
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Overview: Flow control

● At the stream level (MAX_STREAM_DATA)
○ Limits the number of bytes sent on a stream

● At the connection level (MAX_DATA)
○ Limits the number of bytes sent across all streams

● Controlling concurrency (MAX_STREAMS)
○ Limits the amount of streams
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Overview: Congestion control

● Interface for incorporating different algorithms.

● In the spec: algorithm similar to TCP Reno.

● Accurate RTT estimate using ACK Delay.
○ Delay between receipt of a packet and the transmission of 

its ACK.
○ Useful for BBR.
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Pluginized QUIC
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What is Pluginized QUIC?

● A way to extend QUIC on a per-connection basis

● Endpoints dynamically exchange plugins and execute them
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Protocols evolve

● Today's problems are not tomorrow's
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Protocols evolve

● Today's problems are not tomorrow's

● Most protocols have an “options” field
○ To extend functionality

● Slow deployment
○ TCP SACK took nearly a decade to be adopted
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Idea: Extend via plugins

● Endpoints negotiate plugins on a per-connection 
basis

● Plugin’s bytecode is injected to the peer
○ Modify behavior by attaching to well-defined locations

● Brings innovation to the transport layer
○ New congestion controller
○ New frames/transport parameters
○ Improved RTT calculation
○ ... 31
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Plugins negotiation

● New QUIC transport parameters and 
frame types

● supported_plugins
○ Plugins a PQUIC peer can inject locally

● plugins_to_inject
○ Plugins that a PQUIC peer would like to 

communicate to the other PQUIC peer
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Initial: Client Hello
supported_plugins=[vpn]

Initial: Server Hello
plugins_to_inject=[monitoring]

PLUGIN_REQUEST: monitoring

PLUGIN: monitoring

… Compressed bytecode … 

Initial plugin exchange



PQUIC Requirements

Given QUIC implementation, we need:

● Identifying protocol operations

● Running plugins in a safe environment

● Providing an API to the plugins
○ To modify connection state
○ Allocate memory
○ ...
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Protocol operations

● Transport protocol: provides set of basic functions
○ Parsing and processing frames
○ PTO computation
○ Updating RTT
○ Remove acknowledged frames from the sending buffer
○ Add to send buffer
○ ....
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Protocol operations

● Transport protocol: provides set of basic functions
○ Parsing and processing frames
○ PTO computation
○ Updating RTT
○ Remove acknowledged frames from the sending buffer
○ Add to send buffer
○ ....

● Plugin: provides new set of protocol functions 
(modified or added)
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process_frame

update_rtt
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process_frame
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Attaching to protocol operation (1/3)
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protoop_arg_t 
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t* 
cnx, args...) {

// PRE
    

// REPLACE
    

// POST
}



Attaching to protocol operation (2/3)
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protoop_arg_t 
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t* 
cnx, args...) {

// PRE

    
// REPLACE

    

// POST
}

PRE VM Plugin VM Plugin

POST VM Plugin

Can read 
connection state, 
not write.



Attaching to protocol operation (3/3)

38

protoop_arg_t 
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t* 
cnx, args...) {

// PRE

    
// REPLACE

    

// POST
}

REPLACE VM Plugin
Can change 
connection state.
Exclusive.



Running plugins

● Plugin = manifest (where to attach) + collection of pluglets
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pluglet1 
bytecode

pluglet2
bytecode

plugletN
bytecode

...
Manifest

pluglet1.c

pluglet2.c

plugletN.c

clang -target bpf … 

clang -target bpf … 

clang -target bpf … 

Plugin



eBPF Virtual Machine

● Lightweight register-based virtual machine
○ Integrated in Linux kernel since 2014
○ RISC instruction set

● Just-in-time compilation

● Each pluglet runs in a Pluglet Runtime 
Environment (PRE)

○ Userspace eBPF virtual machine
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$ sudo tcpdump -d "tcp port 0x1337"
(000) ldh  [12]
(001) jeq  #0x86dd      jt 2    jf 8
(002) ldb  [20]
(003) jeq  #0x6         jt 4    jf 19
(004) ldh  [54]
(005) jeq  #0x1337      jt 18    jf 6
(006) ldh  [56]
(007) jeq  #0x1337      jt 18    jf 19
(008) jeq  #0x800       jt 9    jf 19
(009) ldb  [23]
(010) jeq  #0x6         jt 11    jf 19
(011) ldh  [20]
(012) jset #0x1fff      jt 19    jf 13
(013) ldxb 4*([14]&0xf)
(014) ldh  [x + 14]
(015) jeq  #0x1337      jt 18    jf 16
(016) ldh  [x + 16]
(017) jeq  #0x1337      jt 18    jf 19
(018) ret  #262144
(019) ret  #0



Ensuring safe environment

● Static verifier
○ Looking for invalid opcodes/values
○ Requires exit instruction

● Memory accesses are verified dynamically
○ Access allowed only to plugin’s stack and heap

● Plugins are isolated
○ Communication is allowed using a well-defined 

interface
○ get()/set() interface to read/write connection state
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What about performance?

● JITed eBPF ~ 2x slower than native code

● get()/set() interface ~ 5x slower than direct access
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Flexibility has its price!



Summary

● QUIC is a new transport protocol
○ Secure and reliable

● PQUIC dynamically extends QUIC via Plugins
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Thanks for listening!
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