
Pluginizing QUIC
Moshe Kol, DANSS 2021

Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure.
2019. Pluginizing QUIC. In Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM '19). Association for Computing
Machinery, New York, NY, USA, 59–74. DOI:https://doi.org/10.1145/3341302.3342078

1

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar,
Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang,
and Zhongyi Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM '17). Association for Computing Machinery, New York, NY, USA, 183–196.
DOI:https://doi.org/10.1145/3098822.3098842

Agenda

● QUIC Protocol Overview
○ Motivation
○ Features overview

● Pluginized QUIC
○ Motivation
○ Plugins architecture

2

What is QUIC? (1/2)

● New transport protocol, secure and reliable

● UDP-based
○ Because UDP is well-supported on the Internet

● Initially designed by Google
○ Deployed in 2014
○ Seek to replace the HTTPS stack

3

https://quicwg.org/

https://quicwg.org/

What is QUIC? (2/2)

● Google reports better quality of experience
○ Improved YouTube rebuffer rate by 15-18%
○ Improved Google search latency by 3.6-8%

● IETF working group was formed in 2016
○ Current draft: 34
○ RFC expected at the end of 2021

4

https://quicwg.org/

https://quicwg.org/

The story of the web (1/2)

● Layered design
○ End-to-end principle

5

IP

TCP

HTTP

IPIP IP

TCP

HTTP

Unreliable packet delivery
Routing services

Reliable byte stream
Flow control
Congestion control
Demultiplexing

Request-response protocol
Operations on resources

Attacker can
sniff the traffic

The story of the web (2/2)

● Security is needed

6

IP

TCP

HTTP

IPIP IP

TCP

TLS

HTTP

TLS
Encryption
Authentication

Drawbacks: Handshake latency (1/2)

● At least 2-RTTs before useful data can be sent

7

Drawbacks: Handshake latency (2/2)

● At least 2-RTTs before useful data can be sent

● Demands on reducing web latency
○ Web as a platform for applications
○ Many objects are needed to be fetched

8

Drawbacks: TCP head-of-line blocking

● HTTP/1.0: Each HTTP request requires a TCP connection.

● HTTP/1.1: Introduced persistent connection and pipelining.

● HTTP/2: Multiple HTTP requests on the same TCP connection.

9

123456

Client Server
Head of line

Lost segment of one request delays others!

Drawbacks: Protocol ossification

● Middleboxes: “intermediary devices performing functions other than the normal” (RFC 3234)

○ NAT routers: rewrite transport and IP headers
○ Firewalls: block unknown traffic for security reasons
○ Load balancers, Proxies, …

10

RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3

Drawbacks: Slow deployment

● TCP is implemented in the OS kernel
○ It takes time to make changes and upgrade systems

● Upgrade cycles
○ OS: order of months-years
○ Browsers: order of weeks (Chrome: 6 weeks)

11

Drawbacks: Slow deployment

● TCP is implemented in the OS kernel
○ It takes time to make changes and upgrade systems

● Upgrade cycles
○ OS: order of months-years
○ Browsers: order of weeks (Chrome: 6 weeks)

● A UDP-based protocol is implemented in userspace
○ More flexible

12

QUIC Overview

13

Introducing QUIC

14

IP

TCP

HTTP/2

TLS

IP

UDP

HTTP/3

QUIC TLS 1.3

Network

Transport

Security

Application

Overview: Connection establishment (1/3)

Initial connection

15

Overview: Connection establishment (2/3)

Subsequent connection

16

Overview: Connection establishment (3/3)

● Connection IDs are exchanged during handshake.
○ Each endpoint chooses a connection ID (up to 20 bytes).
○ Packets specify the other endpoint’s CID.

● QUIC uses connection ID to identify a connection.
○ Unlike TCP which uses a 5-tuple (src_ip, src_port, dst_ip, dst_port, transport).

● Transport options exchanged in quic_transport_parameters TLS extension.
○ E.g. flow control limits, max number of streams, max idle time.

17

CID:
d09d13e12c698b7fb21d
c45e75a22a3b7af8f8e3

Overview: Connection migration

● Connection IDs gives more flexibility.

● Client can change IP address and keep the
connection open.

● Resilient to NAT timeout and rebinding.

18

DCID: b120a815

NEW_CONNECTION_ID:4a6a99bb
NEW_CONNECTION_ID:f78936f8
NEW_CONNECTION_ID:c4f8457f

...

DCID: 4a6a99bb

Overview: Stream multiplexing (1/2)

● Multiple streams within a single QUIC connection.

● A stream provides ordered delivery.
○ Similar to a single TCP connection.

● Identified by stream ID.
○ Odd IDs - client initiated; Even IDs - server initiated.
○ Can be unidirectional or bidirectional.

19

Multiple TCP connections

Single QUIC connection
(UDP-based)

Overview: Stream multiplexing (2/2)

● QUIC packet contains multiple frames.

20

+-+-+-+-+-+-+--+
|0|1|S|R|R|K|PP|
+-+-+-+-+-+-+--+-----------------------+
| Destination Connection ID (0..160) ...
+--------------------------------------+
| Packet Number (8/16/24/32) ...
+--------------------------------------+
| Protected Payload (*) ...
+--------------------------------------+

+---------+
| Frame 1 |
+---------+
 ...
+---------+
| Frame N |
+---------+

+-------------+
| Stream ID ...
+-------------+
| [Offset] ...
+-------------+
| [Length] ...
+-------------+
| Data ...
+-------------+

● Each frame has a type.
○ ACK, CRYPTO, STREAM, MAX_DATA, MAX_STREAM_DATA, ...

Overview: Authentication and encryption

TCP/TLS/HTTP

21

QUIC/HTTP

TCP

TLS
(Record)

HTTP

UDP

QUIC
(1-RTT)

HTTP

Overview: Authentication and encryption

TCP/TLS/HTTP

22

QUIC/HTTP

TCP

TLS
(Record)

HTTP

UDP

QUIC
(1-RTT)

HTTP

Overview: Loss recovery (1/2)

● QUIC uses monotonically increasing packet numbers
○ Unlike TCP which uses sequence numbers

● Packet numbers specify transmission order
○ Not delivery order

● Remedies TCP’s retransmission ambiguity [3]

23

Client Server

Retransmission

Seq: 1234
Len: 1000

Seq: 1234
Len: 1000

Ack: 2234

First or second?

Overview: Loss recovery (2/2)

● No retransmission of the same QUIC packet
○ Lost frames are sent in a new packet
○ Gives flexibility to the packet scheduler

● Streams are independent w.r.t. ordering/retransmission
○ Addresses head-of-line blocking

24

Overview: Flow control

● At the stream level (MAX_STREAM_DATA)
○ Limits the number of bytes sent on a stream

● At the connection level (MAX_DATA)
○ Limits the number of bytes sent across all streams

● Controlling concurrency (MAX_STREAMS)
○ Limits the amount of streams

25

Overview: Congestion control

● Interface for incorporating different algorithms.

● In the spec: algorithm similar to TCP Reno.

● Accurate RTT estimate using ACK Delay.
○ Delay between receipt of a packet and the transmission of

its ACK.
○ Useful for BBR.

26

Pluginized QUIC

27

What is Pluginized QUIC?

● A way to extend QUIC on a per-connection basis

● Endpoints dynamically exchange plugins and execute them

28

https://pquic.org/

https://pquic.org/

Protocols evolve

● Today's problems are not tomorrow's

29

File transfer

80’s-90’s

Today

Protocols evolve

● Today's problems are not tomorrow's

● Most protocols have an “options” field
○ To extend functionality

● Slow deployment
○ TCP SACK took nearly a decade to be adopted

30

2011

Idea: Extend via plugins

● Endpoints negotiate plugins on a per-connection
basis

● Plugin’s bytecode is injected to the peer
○ Modify behavior by attaching to well-defined locations

● Brings innovation to the transport layer
○ New congestion controller
○ New frames/transport parameters
○ Improved RTT calculation
○ ... 31

VM

Plugin

VM

Plugin

Negotiate
plugins

Plugins negotiation

● New QUIC transport parameters and
frame types

● supported_plugins
○ Plugins a PQUIC peer can inject locally

● plugins_to_inject
○ Plugins that a PQUIC peer would like to

communicate to the other PQUIC peer

32

Initial: Client Hello
supported_plugins=[vpn]

Initial: Server Hello
plugins_to_inject=[monitoring]

PLUGIN_REQUEST: monitoring

PLUGIN: monitoring

… Compressed bytecode …

Initial plugin exchange

PQUIC Requirements

Given QUIC implementation, we need:

● Identifying protocol operations

● Running plugins in a safe environment

● Providing an API to the plugins
○ To modify connection state
○ Allocate memory
○ ...

33

Protocol operations

● Transport protocol: provides set of basic functions
○ Parsing and processing frames
○ PTO computation
○ Updating RTT
○ Remove acknowledged frames from the sending buffer
○ Add to send buffer
○

34

process_frame

update_rtt

write_transport_
parameter

Default

Protocol operations

● Transport protocol: provides set of basic functions
○ Parsing and processing frames
○ PTO computation
○ Updating RTT
○ Remove acknowledged frames from the sending buffer
○ Add to send buffer
○

● Plugin: provides new set of protocol functions
(modified or added)

35

process_frame

update_rtt

write_transport_
parameter

process_frame

update_rtt

write_transport_
parameter

new_protoop

Default

With plugin

Attaching to protocol operation (1/3)

36

protoop_arg_t
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t*
cnx, args...) {

// PRE

// REPLACE

// POST
}

Attaching to protocol operation (2/3)

37

protoop_arg_t
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t*
cnx, args...) {

// PRE

// REPLACE

// POST
}

PRE VM Plugin VM Plugin

POST VM Plugin

Can read
connection state,
not write.

Attaching to protocol operation (3/3)

38

protoop_arg_t
process_ack_frame_maybe_ecn(picoquic_cnx_t* cnx) {

// ...
picoquic_update_rtt(cnx, args...);
// ...

}

picoquic_packet_t* picoquic_update_rtt(picoquic_cnx_t*
cnx, args...) {

// PRE

// REPLACE

// POST
}

REPLACE VM Plugin
Can change
connection state.
Exclusive.

Running plugins

● Plugin = manifest (where to attach) + collection of pluglets

39

pluglet1
bytecode

pluglet2
bytecode

plugletN
bytecode

...
Manifest

pluglet1.c

pluglet2.c

plugletN.c

clang -target bpf …

clang -target bpf …

clang -target bpf …

Plugin

eBPF Virtual Machine

● Lightweight register-based virtual machine
○ Integrated in Linux kernel since 2014
○ RISC instruction set

● Just-in-time compilation

● Each pluglet runs in a Pluglet Runtime
Environment (PRE)

○ Userspace eBPF virtual machine

40

$ sudo tcpdump -d "tcp port 0x1337"
(000) ldh [12]
(001) jeq #0x86dd jt 2 jf 8
(002) ldb [20]
(003) jeq #0x6 jt 4 jf 19
(004) ldh [54]
(005) jeq #0x1337 jt 18 jf 6
(006) ldh [56]
(007) jeq #0x1337 jt 18 jf 19
(008) jeq #0x800 jt 9 jf 19
(009) ldb [23]
(010) jeq #0x6 jt 11 jf 19
(011) ldh [20]
(012) jset #0x1fff jt 19 jf 13
(013) ldxb 4*([14]&0xf)
(014) ldh [x + 14]
(015) jeq #0x1337 jt 18 jf 16
(016) ldh [x + 16]
(017) jeq #0x1337 jt 18 jf 19
(018) ret #262144
(019) ret #0

Ensuring safe environment

● Static verifier
○ Looking for invalid opcodes/values
○ Requires exit instruction

● Memory accesses are verified dynamically
○ Access allowed only to plugin’s stack and heap

● Plugins are isolated
○ Communication is allowed using a well-defined

interface
○ get()/set() interface to read/write connection state

41

VM Pluglet1

stack heap

VM Pluglet2

stack heap

VM Pluglet3

stack heap

Plugin A
Memory

Plugin B
Memory

What about performance?

● JITed eBPF ~ 2x slower than native code

● get()/set() interface ~ 5x slower than direct access

42

Flexibility has its price!

Summary

● QUIC is a new transport protocol
○ Secure and reliable

● PQUIC dynamically extends QUIC via Plugins

43

References

[1] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas Given-Wilson,
Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Pluginizing QUIC. In Proceedings of the
ACM Special Interest Group on Data Communication (SIGCOMM '19). Association for Computing
Machinery, New York, NY, USA, 59–74. DOI:https://doi.org/10.1145/3341302.3342078

[2] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan
Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind,
Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM '17). Association for Computing Machinery, New York, NY, USA,
183–196. DOI:https://doi.org/10.1145/3098822.3098842

[3] P. Karn and C. Partridge. 1987. Improving round-trip time estimates in reliable transport protocols.
SIGCOMM Comput. Commun. Rev. 17, 5 (Oct./Nov. 1987), 2–7.
DOI:https://doi.org/10.1145/55483.55484

[4] QUIC 101, David Schinazi, Chrome University. https://youtu.be/dQ5AND4DPyU

44

https://doi.org/10.1145/3341302.3342078
https://doi.org/10.1145/3098822.3098842

References

[5] Does the QUIC handshake require compression to be fast? Patrick McManus, May 18, 2020
https://www.fastly.com/blog/quic-handshake-tls-compression-certificates-extension-study

[6] Y. Cui, T. Li, C. Liu, X. Wang and M. Kühlewind, "Innovating Transport with QUIC: Design
Approaches and Research Challenges," in IEEE Internet Computing, vol. 21, no. 2, pp. 72-76,
Mar.-Apr. 2017, doi: 10.1109/MIC.2017.44.

[7] Gagliardi E., Levillain O. (2020) Analysis of QUIC Session Establishment and Its Implementations.
In: Laurent M., Giannetsos T. (eds) Information Security Theory and Practice. WISTP 2019. Lecture
Notes in Computer Science, vol 12024. Springer, Cham.
https://doi.org/10.1007/978-3-030-41702-4_11

[8] Understanding QUIC, Hunter Dellaverson, Tianxiang Li, Jana Iyengar, Lixia Zhang
http://web.cs.ucla.edu/~lixia/papers/UnderstandQUIC.pdf

[9] ACM SIGCOMM 2020 Tutorial on the QUIC Protocol
https://conferences.sigcomm.org/sigcomm/2020/tutorial-quic.html

45

https://www.fastly.com/blog/quic-handshake-tls-compression-certificates-extension-study
https://doi.org/10.1007/978-3-030-41702-4_11
http://web.cs.ucla.edu/~lixia/papers/UnderstandQUIC.pdf
https://conferences.sigcomm.org/sigcomm/2020/tutorial-quic.html

References

[10] QUIC: A UDP-Based Multiplexed and Secure Transport
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt

[11] Using TLS to Secure QUIC https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
[12] QUIC Loss Detection and Congestion Control

https://www.ietf.org/archive/id/draft-ietf-quic-recovery-34.txt

46

https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-recovery-34.txt

Thanks for listening!

47

