
The Hebrew University of Jerusalem
The Rachel and Selim Benin School of Computer Science and Engineering

Device Tracking via Linux’s New TCP Source
Port Selection Algorithm

החדש האלגוריתם באמצעות מכשירים אחר מעקב
TCPב־ המקור פורט לבחירת Linux של

Moshe Kol

Thesis submitted in partial fulfillment of the requirements
for the Master of Sciences degree

in Computer Science

Under the supervision of Dr. Yossi Gilad

October 2022

בירושלים העברית האוניברסיטה
בנין וסלים רחל שם על המחשב ולמדעי להנדסה הספר בית

המחשב למדעי החוג

Device Tracking via Linux’s New TCP Source
Port Selection Algorithm

החדש האלגוריתם באמצעות מכשירים אחר מעקב
TCPב־ המקור פורט לבחירת Linux של

ידי על מוגש
קול משה

המחשב במדעי מוסמך לתואר גמר עבודת

ידי על הונחתה זו עבודה
גלעד יוסי ד״ר

2022 אוקטובר

תקציר

אשר ,Linux שמריצים מכשירים עבור מעקב טכניקת מתארים אנו זו בתזה

המקור פורט ליצירת Linuxב־ לאחרונה ששולב החדש המנגנון את מנצלת

,RFC ב־6056 המתוקנן אלגוריתם, על מבוסס זה מנגנון .TCP בפרוטוקול

של יותר טובה אקראית בחירה ידי על האבטחה את להגביר שמטרתו

את המשמשת גיבוב בפונקציית התנגשויות מזהה שלנו הטכניקה פורטים.

כמות איסוף באמצעות מזהים אנו ההתנגשויות את האמור. האלגוריתם

ידי על שנקבע באופן נוצרות הדגימות מקור. פורטי דגימות של מספקת

אך תלויות אלו התנגשויות הקורבן. של בדפדפן סקריפט מריץ אשר התוקף,

ההתנגשויות מכלול ולפיכך מכשיר, לכל שקיים ביט 128 בגודל במפתח ורק

על־פני מכשירים אחר לעקוב המאפשר עוצמה רב מכשיר״ ״מזהה מהווה

כמה כולל ,IPv6/IPv4 ורשתות קונטיינרים בדפדפן, פרטיות מצבי דפדפנים,

ומסוגל המכשיר של מחדש להפעלה עד תקף נשאר המכשיר מזהה VPN־ים.

זהים. ותוכנה חומרה עם מכשירים בין להבחין

שונות, ברשתות Linux התקני על אותה ובדקנו המעקב טכניקת את מימשנו

הטכניקה את בדקנו בנוסף, שונים. מיקומים בשני מעקב שרתי באמצעות

את שמכילה מותאמת Linux ליבת גרסת שמריץ Android מכשיר על שלנו

המעקב טכניקת כי עלה שלנו מהניסויים החדש. הפורטים בחירת אלגוריתם

שעלו הממצאים את מתארים אנו בתזה אמיתיים. בתנאים ושמישה פועלת

הסילומיות שיעור המכשיר, מזהה את לייצר שלוקח הזמן כולל בניסויים,

i

ii

שונות. ברשתות ההצלחה ושיעור

איתם יחד ועבדנו Linux של האבטחה לצוות שמצאנו המתקפה על דיווחנו

2022 במאי שוחרר מכך, כתוצאה המתקפה. מפני הגנה בליבה לשלב כדי

לאבטחה המלצות מספקים גם אנו בתזה .Linux לליבת אבטחה תיקון

הפורטים. בחירת אלגוריתם של יותר טובה

.USENIX Security ב־23’ תופיע הזאת התזה שבבסיס הטכניקה

Abstract

We describe a tracking technique for Linux devices, exploiting a new TCP

source port generation mechanism recently introduced to the Linux ker-

nel. This mechanism is based on an algorithm, standardized in RFC 6056,

for boosting security by better randomizing port selection. Our technique

detects collisions in a hash function used in the said algorithm, based on

sampling TCP source ports generated in an attacker-prescribed manner.

These hash collisions depend solely on a per-device key, and thus the set of

collisions forms a powerful device ID that allows tracking devices across

browsers, browser privacy modes, containers, and IPv4/IPv6 networks

(including some VPNs). It can distinguish among devices with identical

hardware and software, and lasts until the device restarts.

We implemented the tracking technique and then tested it using track-

ing servers in two different locations and with Linux devices on various

networks. We also tested our technique on an Android device that we

patched to introduce the new port selection algorithm. The tracking tech-

nique works in real-life conditions, and we report detailed findings about

it, including its dwell time, scalability, and success rate in different net-

work types. We worked with the Linux kernel team to mitigate the exploit,

resulting in a security patch introduced in May 2022 to the Linux kernel,

iii

iv

and provide recommendations for better securing the port selection algo-

rithm in the thesis.

The technique in the main part of this thesis will appear in USENIX Secu-

rity ’23.

Acknowledgements

I am deeply grateful to my supervisor, Dr. Yossi Gilad, for all the support

during my M.Sc studies. Yossi mentored me throughout my journey in

academia and showed great patience and flexibility. His extensive knowl-

edge and unique experience have inspired me to expand my knowledge

to other areas of interest and pursue academic research. I value his moti-

vation to deliver high-quality research and I am grateful for his invaluable

advice. Thank you, Yossi.

I would like to extend my gratitude to Dr. Amit Klein, for his guidance

at every stage of the research project, his availability even at non-optimal

times, and his insightful comments and suggestions. Thank you, Amit.

Finally, I would like to thank my parents, my brothers, and my beloved

spouse, Shira, for their unwavering support and belief in me. Thank you,

Shira, for supporting me every step of the way and tolerating the unusual

hours I was working.

v

Contents

I Device Tracking via Linux’s New TCP Source Port Se-
lection Algorithm 1

1 Introduction 2

2 Related Work 8

3 Background 11

3.1 RFC 6056 . 11

3.2 Double-Hash Port Selection Algorithm 12

3.3 Port selection in the Linux kernel 13

3.4 Port selection in Android . 14

4 Device Tracking Based on DHPS 15

4.1 Attack Overview . 17

4.2 Phase 1 . 18

4.3 Phase 2 . 19

vi

Contents vii

4.4 Further Improvements . 25

4.5 Performance Analysis . 29

5 Implementation 31

5.1 Linux’s DHPS Variant . 31

5.2 Adapted Phase 2 Algorithm 32

5.3 Device Tracking Technique Prototype 33

5.4 Minor Implementation Details 35

5.4.1 Supporting Firefox . 35

5.4.2 Private Network Access 37

5.4.3 Scalability . 37

5.4.4 Handling packet drops 38

6 Evaluation 39

6.1 Browsers . 40

6.2 Networks, NATs, VPNs and Containers 40

6.3 Active Devices . 43

6.4 Dwell Time . 43

6.5 Android . 45

6.6 Resource Consumption . 46

7 Countermeasures 48

7.1 Network Security Measures 49

Contents viii

8 Conclusion 51

9 Vendor Status 52

A Analysis of the Runtime of Our Attack Against DHPS 60

A.1 Calculating the Distribution of µr 60

A.2 Analysis of Phase 1 . 62

A.3 Analysis of Phase 2 . 66

A.4 Notes About Low T Values 73

B Another Use Case: Traffic Measurement 76

C Analysis of RFC 6056’s Algorithm 5 78

II Publications 80

D Groove: Flexible Metadata Private Messaging 81

E Device Tracking via Linux’s New TCP Source Port Selection Al-

gorithm 83

List of Figures

4.1 Phase 1 – Single Iteration. 19

4.2 Phase 2 – Single Iteration. 21

4.3 Phase 2 – Calculating a Device ID from Multiple Iterations . 22

A.1 Distribution Function for Phase 1 Iterations 66

ix

List of Tables

6.1 Tested networks . 41

A.1 n∗l for N = 1000000, ĉ = 1 . 69

A.2 Phase 2 Analysis vs. Simulated Results 74

x

Part I

Device Tracking via Linux’s New

TCP Source Port Selection

Algorithm

1

1 Introduction

Since Internet communication is often sensitive, end-to-end encryption so-

lutions have become popular [6, 22]. Using encryption, it is possible to

hide the content of a message. Yet, attackers observing users’ communi-

cation can also learn private information about them through the com-

munication’s metadata: the message source and destination, the message

length, the time the message has been sent or received, and any informa-

tion contained in the message headers (such as IP and TCP). For example,

if Alice regularly contacts an oncologist, the attacker may deduct she was

diagnosed with cancer. Alarmingly, former officials at the NSA have even

stated that “if you have enough metadata you don’t really need content”

[28] and “we kill people based on metadata” [7]. This indicates that pri-

vacy cannot be achieved without protecting metadata.

One approach to enable scalable metadata-private communication in the

face of a global active adversary (an adversary that observes and con-

trols all network links) is to rigorously obscure the attacker’s observations

about the users’ communication by adding randomized chaff traffic and

using techniques from differential privacy to analyze its privacy proper-

ties [32, 17]. Prior solutions using this approach had some constraints:

users were required to submit their messages at a regular interval (even if

2

Chapter 1. Introduction 3

they have nothing to submit), they were limited to using a single device,

both communicating buddies should be online at the same time to com-

municate and all chaff traffic had to be downloaded. Consequently, the

users’ experience on such systems is very different from regular messaging

apps. Further, this kind of usage is incompatible with mobile devices, that

might go offline, have battery and network constraints. In response, we

architectured Groove, a scalable text-based metadata-private system that

is flexible: users might go offline and have multiple devices, without hav-

ing their mobile device’s battery or network plan drain out quickly. Our

work on Groove appeared on OSDI, the premier conference in the systems

community.

This thesis demonstrates exploitation of the metadata contained in the

TCP header to enable online device tracking. It assumes a weaker kind

of adversary: the adversary might run a malicious script in the victim’s

web-browser sandbox and can only interact with the victim using servers

under his control.

Online browser-based device tracking is a widespread practice, employed

by many Internet websites and advertisers. It allows identifying users

across multiple sessions and websites on the Internet. A list of motiva-

tions for web-based device tracking (fingerprinting) is listed in [1] and

includes “fraud detection, protection against account hijacking, anti-bot

and anti-scraping services, enterprise security management, protection

against DDOS attacks, real-time targeted marketing, campaign measure-

ment, reaching customers across devices, and limiting the number of ac-

cesses to services”.

Device tracking is often performed to personalize ads or for surveillance

Chapter 1. Introduction 4

purposes. It can either be done by sites that users visit or by third-party

companies (e.g. advertisement networks) which track users across multi-

ple websites and applications (“cross-site tracking”). Traditionally, cross-

site tracking was implemented via 3rd party cookies. However, nowadays,

users are more aware of the cookies’ privacy hazards, and so they use mul-

tiple browsers, browser privacy mode, and cookie deletion to avoid such

tracking. In addition, support for 3rd party cookies in major browsers is

being withdrawn due to privacy concerns [33, 5]. Trackers are, therefore,

on the look for new tracking technologies, particularly ones that can work

across sites and across browsers and privacy modes, thereby breaking the

isolation the latter attempt to provide.

Probably the most alarming impact of device tracking is the degradation

of user privacy – when a user’s device can be tracked across network

changes, different browsers, VPNs, and browser privacy modes. This

means that users who browse to one site with some identity (e.g., user

account), then browse to another site, from another browser, another net-

work (or VPN), and perhaps at another time altogether, using a completely

different and unrelated second identity, may still have the two identities

linked.

Often, device tracking techniques are used in a clandestine manner, with-

out the user’s awareness and without obtaining the user’s explicit consent.

This motivates researchers to understand the challenges of device track-

ing, find new tracking techniques that can be used without consent, and

work with the relevant software vendors to eliminate such techniques and

raise awareness of these new kinds of attacks.

In this thesis, we present a new browser-based tracking technique that

Chapter 1. Introduction 5

supports tracking across IPv4 and IPv6 networks, browsers, VPNs, and

browser privacy modes. Our tracking technique can provide up to 128

bits of entropy for the device ID (in the Linux implementation) and re-

quires negligible CPU and RAM resources for its operation. Our tech-

nique uses standard web technologies such as Javascript, WebRTC TURN

(in Chrome), and XHR (in Firefox). It assumes that a browser renders a

web page with an embedded tracking HTML snippet that communicates

with a 1st-party tracking server (i.e., there is no reliance on common infras-

tructure among the tracking websites). The tracking server then calculates

a device ID. This ID is based on kernel data. Therefore, the same device ID

is calculated by any site that runs the same logic, regardless of the network

from which the tracked device arrives, or the browser used.

The tracking technique is based on observing the TCP source port num-

bers generated by the device’s TCP/IP stack, which is implemented in

the operating system kernel. There are several popular TCP source port

generation algorithms that differ in the level of security vs. functionality

they deliver. Security-wise, TCP source ports should be as unpredictable

as possible to off-path attackers [15, §1]. Functionality-wise, TCP source

ports should not repeat too often (to mitigate the “instance-id collision”

problem [15, §2.3]).

RFC 6056 “Recommendations for Transport-Protocol Port Randomiza-

tion” [15, §3.3] lists five algorithms used by different operating systems to

generate TCP source port numbers. According to RFC 6056, the “Double-

Hash Port Selection” algorithm [15, §3.3.4] offers the best trade-off be-

tween the design goals of TCP source ports (see §3), and indeed it was

recently adopted with minor modifications by Linux (starting with ker-

nel version 5.12-rc1). Our analysis targets this port selection algorithm,

Chapter 1. Introduction 6

which we expect to propagate into Android devices as well (as Android

13 launches with kernel version 5.15 [24]).

Our technique finds hash collisions in one of the algorithm’s hash func-

tions. These collisions depend only on a secret hashing key that the OS

kernel creates on boot time and maintains until the system is shut down.

Thus, the set of collisions forms a device ID that spans the lifetime of this

key, surviving changes to networks, transitions into and out of sleep mode,

and using containers on the same machine. It does not rely on the specific

choice of the hash functions for the RFC 6056 algorithm beyond the RFC’s

own requirement, and as such, it presents a generic attack against the RFC

algorithm. Since our technique relies on the client’s port selection algo-

rithm, it also has some limitations. Specifically, it is ineffective when the

client uses Tor or an HTTP forward proxy since they terminate the TCP

connection originating at the device and establish their own TCP connec-

tion with the tracking server. Furthermore, if a middlebox rewrites the

TCP source ports or throttles the traffic, it can interfere with our technique.

However, we note that this kind of interference is typically NAT-related

and as such is unlikely to apply to IPv6 networks.

We implemented the device tracking technique and tested it with Linux

devices across various networks (cellular, WiFi, Ethernet), VPNs, browsers

(Chrome, Firefox), browser privacy modes, and Linux containers. It re-

quires the browser to dwell on the web page for 10 seconds on average,

which aligns with our theoretical analysis. The resources device track-

ing requires from the attacker are low, which allows calculating IDs for

millions of devices per tracking server. Since off-the-shelf Android de-

vices have not yet deployed Linux kernels that use the new port selection

algorithm, we introduced the new algorithm through a patch to a Sam-

Chapter 1. Introduction 7

sung Galaxy S21 mobile phone (Android device) and tested it. We rec-

ommended countermeasures to the Linux kernel team and worked with

them on a security patch that was recently released (May 2022). We discuss

these recommendations in the thesis.

In sum, we make the following contributions:

• Analysis of RFC 6056’s “Double-Hash Port Selection” algorithm,

showing that a practical device tracking attack can be mounted

against devices using this algorithm.

• Adaptation of our device tracking technique to Linux.

• Demonstration and measurements of our device tracking technique

across the Internet, in practical settings, under various conditions

(browsers, networks, devices, containers, VPNs).

• Full source code of our demonstration tracking server. (Publicly

available on GitHub https://github.com/0xkol/rfc6056-dev

ice-tracker)

2 Related Work

The challenges facing device tracking nowadays revolve around the relia-

bility and scope of the available tracking techniques. Ideally, a web-based

tracking technique should work across browser privacy modes (switch-

ing between the normal browsing mode and the privacy mode such as

“incognito”), across browsers, across networks (switching between cellu-

lar networks, WiFi and Ethernet networks), and even across VPN con-

nections. Furthermore, a tracking technique should address the “golden

image” challenge [10], wherein an organization provisions a multitude of

identical devices (fixed hardware and software configuration) to its em-

ployees. The tracking technique should thus tell these devices apart, even

though there is no difference in their hardware and software.

Device tracking techniques can be categorized into tagging and fingerprint-

ing techniques [34]. Tagging techniques insert an ID to the device, typically

at the browser level (e.g., a resource cached by the browser or an object

added to the standard browser storage such as cookies or localStorage).

Fingerprinting techniques measure a system or browser’s features that can

tell devices apart, such as fonts, hardware, and system language.

Klein and Pinkas [10] provide an extensive review of browser-based track-

ing techniques, current for 2019. They evaluate the techniques’ cover-

8

Chapter 2. Related Work 9

age of the golden image challenge and ability to cross the privacy mode

gap. They find that typically, fingerprinting techniques fail to address the

golden image challenge, while tagging techniques fail when users use the

browser in privacy mode. They found that no single existing technique

was able to fulfill both requirements. The technique suggested in [10] does

not work across networks, and as such, its practicality is limited. A re-

cent (2020) list of fingerprinting techniques (none of which overcomes the

golden image challenge by default) is provided in [14].

Since the analysis provided in [10], the browser-based tracking land-

scape grew with several new techniques. A tagging technique [30] used

the browser favicons cache to store a device ID. This was since fixed in

Chrome 91.0.4452.0 [29, 3]. A fingerprinting technique based on measur-

ing GPU features from the WebGL 2.0 API is provided in [8]. A finger-

printing method based on TLS client features and behavior is described in

[16]. All the above techniques suffer from their respective category (fin-

gerprinting/tagging) drawbacks.

A technique somewhat similar to [10] that uses the stub resolver DNS

cache and times DNS cache miss vs. DNS cache hit events is presented

in [18], but this technique (like [10]) does not work across networks.

The “Drawn Apart” browser-based tracking technique [13] is based on

measuring timing deviations in GPU execution units. This technique is

oblivious to the device’s network configuration and the choice of browser

and privacy mode and can also tell apart devices with identical hardware

and software configurations. However, it does so with limited accuracy –

36.7%-92.7% in lab conditions [13, Table 1], which is insufficient for large-

scale tracking.

Chapter 2. Related Work 10

Klein et al.’s works [11, 2, 9] revolved around a tracking concept based on

kernel data leakage, which identifies individual devices. The leakage oc-

curred in various network protocol headers (IPv4 ID, IPv6 flow label, UDP

source port). All of them were quickly fixed by the respective operating

system vendors due to their severity and impact and were no longer in

effect when our research was conducted.

3 Background

3.1 RFC 6056

RFC 6056 [15, Section 3.3] analyzes five TCP source port allocation algo-

rithms and defines several design goals [15, Section 3.1]. The two goals

relevant to this work are:

• Minimizing the predictability of the ephemeral port numbers used

for future transport-protocol instances.

• Minimizing collisions of instance-ids [TCP 4-tuples].

The first goal aims for security against blind TCP attacks, such as blind

reset or data injection attacks [25]. The second goal is functionality-related

and ensures that successive port assignments for the same destination (IP

and port) do not re-use the same source port since this can cause a TCP

failure at the remote end. That is because if the device terminates one TCP

connection, the server may still keep it active (in the TCP TIME WAIT

state) while the device attempts to establish a second connection with the

same TCP 4-tuple, which will fail since the server has this 4-tuple still in

use.

11

Chapter 3. Background 12

3.2 Double-Hash Port Selection Algorithm

Our focus is on RFC 6056’s Algorithm 4, “Double-Hash Port Selection Al-

gorithm” (DHPS), which is detailed in Algorithm 3.1. This algorithm se-

lects a TCP source port for a given IPSRC, IPDST, PORTDST, which we term

the connection’s 3-tuple. Thus the algorithm completes a 3-tuple into a

(TCP) 4-tuple. In this algorithm, table is a “perturbation table” of T inte-

ger counters (in the Linux kernel, T = 256), F is a cryptographic keyed-

hash function which maps its inputs to a large range of integers, e.g.,

[0, 232 − 1], and G is a cryptographic keyed-hash function which maps its

inputs to [0, T − 1]. The TCP source ports the algorithm produces are in

the range [min ephemeral, max ephemeral] (in the Linux kernel, by default,

min ephemeral = 32768, max ephemeral = 60999). DHPS calculates an index

i to a counter in table based on a keyed-hash (G) of the given 3-tuple and

uses the counter value offset by another keyed-hash (F) of the 3-tuple as

a first candidate for a port number (using modular arithmetic to produce

a value in [min ephemeral, max ephemeral]). DHPS then checks whether the

port number candidate is suitable (CHECKSUITABLEPORT). This check is

intentionally under-specified in the RFC so that each implementation may

run its own logic. For example, the Linux kernel checks whether there

already is a 4-tuple with these parameters. If this check passes, DHPS re-

turns the candidate port; otherwise, it increments the candidate port and

runs the check again.

Chapter 3. Background 13

Algorithm 3.1 DHPS Source Port Selection (RFC 6056 §3.3.4)

1: procedure SELECTEPHEMERALPORT
2: num ephemeral←
3: max ephemeral−min ephemeral + 1
4: offset← FK1(IPSRC, IPDST, PORTDST)
5: index← GK2(IPSRC, IPDST, PORTDST)
6: count← num ephemeral
7: repeat
8: port← min ephemeral+
9: ((offset + tableindex) mod num ephemeral)

10: tableindex ← tableindex + 1
11: if CHECKSUITABLEPORT(port) then
12: return port
13: count← count− 1
14: until count = 0
15: return ERROR

3.3 Port selection in the Linux kernel

Linux version 5.12-rc1 switched from RFC 6056’s Algorithm 3 (“Simple

Hash-Based Port Selection Algorithm”) to DHPS, quoting security and pri-

vacy concerns as the reason for this change [4]. Starting from this version,

the Linux kernel uses DHPS to generate TCP source ports for outbound

TCP connections over IPv4 and IPv6. The Linux implementation and its

few minor modifications are discussed in §5.1. Linux kernel version 5.15

is the first long-term service (LTS) kernel version in which DHPS is used,

thus LTS Linux installations using unpatched kernel 5.15 and above are

vulnerable (see §9).

Chapter 3. Background 14

3.4 Port selection in Android

The Android operating system kernel is based on Linux and as such vul-

nerabilities found in Linux may also impact Android. The TCP source

port selection algorithm in Android depends on the underlying Linux ker-

nel version: devices running Linux kernels ≤ 5.10 do not use DHPS and

therefore are not vulnerable, whereas devices running a more recent ker-

nel use DHPS and may be vulnerable if unpatched. At the time of writing,

Android devices on the market use kernel version 5.10, even for Android

13, though Android 13 running kernel 5.15 is likely to be released in the

near future [24]. To assess the feasibility of our attack on Android, we

conducted an experiment using an Android device with a modified ker-

nel that includes the flaw (see §6.5 for results). Since the vulnerability was

patched on Linux in May 2022, and the patch was merged into Android

as well, we expect future Linux and Android devices that use DHPS to be

safe.

4 Device Tracking Based on

DHPS

Attack model. We assume the victim’s (Linux-based) device runs a

browser that renders a web page containing a “tracking snippet” – a

small piece of HTML and Javascript code (which runs in the browser’s

Javascript sandbox). The snippet implements the client-side logic of the

tracking technique. It can be embedded in web pages served by, e.g., com-

merce websites or 3rd-party advertisements. When a device visits these

pages, the tracking server logic calculates a unique ID for that device, al-

lowing tracking it both with respect to the time dimension and the space

dimension (visited websites).

Device ID. When the browser renders the tracking snippet and executes

the Javascript code in it, the code makes the browser engage in a series of

TCP connection attempts with the attacker’s tracking server, interleaved

with TCP connection attempts to a localhost address. By observing the

browser’s traffic TCP source ports at the tracking server, the attacker can

deduce hash collisions on GK2 (this is explained later). The attack con-

cludes when the attacker collects enough pairs of hash collisions on GK2

15

Chapter 4. Device Tracking Based on DHPS 16

where IPSRC, IPDST are fixed loopback addresses, i.e., pairs (x, y) such that

GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = x) =

GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = y)

These pairs depend only on K2, and as such, they represent information on

K2 and on it alone. K2 is statistically unique per device (up to the birthday

paradox) and does not rely on the current browser, network, or container.

Thus, the set of collisions {(xi, yi)} forms a device ID that persists across

browsers, browser privacy mode, network switching, some VPNs, and

even across Linux containers. The ID is invalidated only when the device

reboots or shuts down.

The use of loopback addresses is critical to the effectiveness of the at-

tack. Using the Internet-facing address of the device does not yield a

consistent device ID across networks. While hash collisions based on the

Internet-facing address can be calculated, they are of no use when the de-

vice moves across networks because the device typically obtains a new,

different Internet-facing address whenever it connects to another network.

Thus, the collisions calculated for different networks will likely be com-

pletely different sets.

Limitations. Our technique tracks client devices through their source

port choice. A middlebox such as a NAT may modify the client’s source

port selection and cause the tracking service to fail to compute a consistent

device ID. Furthermore, a device establishing organic TCP connections

during the (short) time the attack executes may also thwart the attack;

however, we integrate a mechanism for robustness against organic TCP

connections. In §6 we evaluate the attack under these conditions (devices

connected through NATs and establishing organic connections while the

Chapter 4. Device Tracking Based on DHPS 17

attack executes). Our technique cannot track clients that connect via for-

ward proxies, which establish a new TCP connection to the tracking server

(instead of a direct connection from the client). Particularly, it is ineffective

against Tor clients.

4.1 Attack Overview

The attack exploits a core vulnerability in DHPS. DHPS assigns a source

port to a destination (IP address and port – 248 combinations for IPv4)

using a state maintained in one of the cells of its small perturbation ta-

ble. This means that many destinations are generated using the same table

cell, i.e., using a state that changes in a predictable way between accesses

(DHPS increments the cell per each usage). The attack exploits this be-

havior for detecting collisions in the cell assignment hash function. Such

collisions among loopback destinations are invariant to the network con-

figuration of the device and can thus serve as a stable device ID.

To describe the attack, we first define two subsets of tuples that are of

special interest for our tracking technique:

• An attacker 3-tuple is a 3-tuple in which IPDST is the attacker’s track-

ing server IP address, and IPSRC is the Internet-facing address used

by the measured device.

• A loopback 3-tuple is a 3-tuple in which IPDST is a fixed loopback ad-

dress (e.g., 127.1.2.3), and IPSRC is a loopback-facing address used by

the measured device (typically 127.0.0.1).

The goal of the attack is to find collisions in GK2 for loopback 3-tuples.

Chapter 4. Device Tracking Based on DHPS 18

These collisions, described as pairs of loopback 3-tuples that hash to the

same value, form the device ID.

The attack consists of two phases. In the first phase (Algorithm 4.1), the

attacker obtains T attacker 3-tuples, each one corresponding to one cell of

the perturbation table. The attacker does not know which 3-tuple maps to

which cell, but that is immaterial to the attack. All the attacker needs is

the existence of a 1-to-1 mapping between the perturbation table and the

T attacker 3-tuples. In the second phase, the attacker maps loopback 3-

tuples into attacker 3-tuples (each loopback 3-tuple considered is mapped

to the attacker 3-tuple that falls into the same perturbation table cell). This

allows the attacker to detect collisions in GK2 for loopback 3-tuples.

4.2 Phase 1

In this phase, the attacker obtains T attacker 3-tuples so that each one cor-

responds to a unique cell in the perturbation table. This is done in iter-

ations, as shown in Algorithm 4.1. Define S′0 = ∅. In iteration i, the

attacker generates a set Si of new attacker destinations (in §A.2 we show

that |Si| = T− 1 minimizes the number of phase 1 iterations). The attacker

then instructs the browser to send three bursts of TCP connection attempts

(TCP SYN packets): the first burst to Si, then the second burst to S′i−1, and

the third burst to Si again. An attacker 3-tuple in Si is determined to be

unique if the difference between the two sampled source ports for that 3-

tuple is 1, indicating that no other attacker 3-tuple in S′i−1 or Si shares the

same perturbation table cell. Define Vi to be all such attacker 3-tuples in Si,

and define S′i = S′i−1 ∪Vi. This is repeated until |S′i| = T, i.e., all perturba-

tion table cells are uniquely covered by the attacker 3-tuples in S′i. Figure

Chapter 4. Device Tracking Based on DHPS 19

4.1 illustrates a single iteration.

0 1 … … … … … T-1 T

600 100 432 300 200

432 +FK1(…,4000)

600 +FK1(…,6000)

100 +FK1(…,5000)

+FK1(…,1000)

200 +FK1(…,2000)

300 +FK1(…,3000)

433 +FK1(…,4000)

602 +FK1(…,6000)

101

102 +FK1(…,5000)

① 1st Si
Burst

② S’i-1
Burst

Index

Value

Perturbation Table

A:4000

A:5000

A:6000

A:4000

A:5000

A:6000

Δ=1
Δ=2

Δ=2

Δ=2

Measured Device (D) Attacker’s Tracking Server (A)
TCP SYN Packets

③ 2nd Si
Burst

④

601 +FK1(…,7000) A:7000

+FK1(…,7000) A:7000603

Figure 4.1: Phase 1 – Single Iteration. This example illustrates how the attacker
adds 3-tuples which fall uniquely into cells. In Step 1 , the device sends a first
burst of TCP SYN packets for the new 3-tuple candidates, Si (4 in this example).
In Step 2 , the device sends the burst of TCP SYN packets for the set S‘i−1 of
unique-cell attacker tuples (3 are shown in the illustration). In Step 3 , the device
sends a second burst of TCP SYN packets for the new 3-tuple candidates. In
Step 4 , the tracking server detects that only for the attacker 3-tuple which has
destination port 4000, the source port was advanced by 1 (yellow background),
which indicates that this 3-tuple has a unique cell. The attacker’s 3-tuple with
destination port 5000 had its source port advanced by 2 because it shares a cell
with destination port 1000 in S′i−1, and the 3-tuples with destination ports 6000
and 7000 share a cell; hence their source ports were advanced by 2.

In §B, we also show how phase 1 by itself can be used to measure the rate

of outbound TCP connections.

4.3 Phase 2

In the second phase, the attacker goes over a list L of loopback 3-tuples.

For each loopback 3-tuple, the attacker finds which attacker 3-tuple (one

of the T attacker 3-tuples found in phase 1) belongs to the same pertur-

bation table cell. This mapping allows the attacker to find collisions in

Chapter 4. Device Tracking Based on DHPS 20

Algorithm 4.1 Finding Attacker 3-Tuple per Cell (Phase 1)

1: procedure SENDBURST(X)
2: for all x ∈ X do
3: ATTEMPTCONNECTTCP(x)
4: procedure GETSOURCEPORTS(U)
5: SENDBURST(U)
6: R← RECEIVEATTACKERTUPLETOPORTMAP()
7: ▷ R = {(IPSRC, IPDST, PORTDST) 7→ PORTSRC}
8: ▷ (obtained from the tracking server)
9: return R

10: procedure PHASE1
11: S′ ← ∅
12: while |S′| < T do
13: Si ← GETNEWEXTERNALDESTINATIONS()
14: ▷ ∀j<i(Si ∩ Sj = ∅)

15: P← GETSOURCEPORTS(Si) ▷ 1st burst
16: SENDBURST(S′) ▷ 2nd burst
17: P′ ← GETSOURCEPORTS(Si) ▷ 3rd burst
18: S′ ← S′ ∪ {x|P′(x)− P(x) = 1}
19: ▷ Vi = {x|P′(x)− P(x) = 1}
20: return S′

GK2 outputs among loopback 3-tuples, which (together with the number

of iterations l) form the device ID.

In this phase (Algorithm 4.2), the attacker repeatedly runs iterations, until

enough GK2 collisions are collected. In each iteration, the attacker maps

a new loopback 3-tuple Li to an attacker 3-tuple w, which hashes into the

same cell of the perturbation table as the loopback 3-tuple. This is done

by “sandwiching” a few loopback 3-tuple Li packets between bursts to all

T attacker 3-tuples obtained in phase 1, and observing which attacker 3-

tuple w has a port increment > 1 (see Figure 4.2). The attacker then collects

new collisions with the first loopback 3-tuple in the cell (Bw) and counts

the total number of collisions in n. This is illustrated in Figure 4.3.

Chapter 4. Device Tracking Based on DHPS 21

0 1 … … … … … T-1 T

111 444 333 222

222 +FK1(…,2000)

333 +FK1(…,3000)

444 +FK1(…,4000)

111 +FK1(…,1000)

112 +FK1(…,1234)

113 +FK1(…,1234)

114 +FK1(…,1234)

223 +FK1(…,2000)

334 +FK1(…,3000)

445 +FK1(…,4000)

115 +FK1(…,1000)

① First Burst

②
Loopback

Connections

Index

Value

Perturbation Table

A:2000

A:1000

A:3000

A:4000

A:2000

A:1000

A:3000

A:4000

127.1.2.3:1234

Δ=1
Δ=4

Δ=1

Δ=1

Measured Device (D) Attacker’s Tracking Server (A)

GK2(IPSRC:=D, IPDST:=A, PORTDST:=1000) = GK2(IPSRC:=127.0.0.1, IPDST:=127.1.2.3, PORTDST:=1234)

TCP SYN Packets

③ Second Burst

④

G(…,4000) G(…,3000) G(…,2000)

Figure 4.2: Phase 2 – Single Iteration. This example illustrates how the attacker
discovers that the the cell of the loopback 3-tuple (IPSRC = 127.0.0.1, IPDST =
127.1.2.3, PORTDST = 1234) is identical to the cell of the attacker 3-tuple (IPSRC =
A, IPDST = D, PORTDST = 1000). In Step 1 , the device sends a first burst of
TCP SYN packets for all T unique-cell attacker tuples (only 4 are shown in the
illustration). In Step 2 , the device sends several (3 in this example) TCP SYN
packets to the loopback destination 127.1.2.3:1234. In Step 3 , the device sends
a second burst of TCP SYN packets for all T unique-cell attacker 3-tuples. In
Step 4 , the tracking server detects that only for the attacker 3-tuple which has
destination port 1000, the source port was advanced by at least 4 (right hand side,
yellow background), which indicates that this 3-tuple shares the same counter
(cell) with the tested loopback 3-tuple (yellow background equation at the upper
left corner).

The attacker collects and counts “independent” colliding pairs. By this

term we mean that if there are exactly k loopback 3-tuples x1, . . . , xk

that fall into the same cell, the attacker only uses k − 1 pairs e.g.

(x1, x2), . . . , (x1, xk), out of the possible (k
2) pairs.

Note that our attack makes no assumptions on the choice of Algorithm

3.1’s parameters (the hash functions F, G), beyond assuming that G is rea-

sonably uniform, which is guaranteed since RFC 6056 [15, Section 3.3.4]

mandates that “G() should be a cryptographic hash function”.

Chapter 4. Device Tracking Based on DHPS 22

Iteration Loopback 3-Tuple - Attacker 3-Tuple Collision

1 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 1234) = GK2(IPSRC = D, IPDST = A, PORTDST = 1000)

2 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 5678) = GK2(IPSRC = D, IPDST = A, PORTDST = 2000)

3 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 1111) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

4 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 2222) = GK2(IPSRC = D, IPDST = A, PORTDST = 4000)

5 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 3333) = GK2(IPSRC = D, IPDST = A, PORTDST = 1000)

6 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 4444) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

7 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 5555) = GK2(IPSRC = D, IPDST = A, PORTDST = 5000)

8 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 6666) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

9 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 7777) = GK2(IPSRC = D, IPDST = A, PORTDST = 6000)

10 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 8888) = GK2(IPSRC = D, IPDST = A, PORTDST = 6000)

11 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 9999) = GK2(IPSRC = D, IPDST = A, PORTDST = 7000)

= (1234,3333)

= (1111,4444) (1111,6666)

= (7777,8888)

Loopback-Loopback Collisions
(Device ID)

⁞

Figure 4.3: Phase 2 – Calculating a Device ID from Multiple Iterations

Terminating with an Accurate ID

We want phase 2 to terminate as soon as “enough” collisions are observed.

By this, we mean that the probability of another device (i.e., a device with

a random K2) to produce the same set of collisions is below a given thresh-

old. Thus, we define our target function Pl
D(n) to be the probability of

a random device getting the same ID as the device D at hand, which is

assumed to terminate after l iterations with exactly n independent pairs.

(We show below that Pl
D(n) does not depend on the “structure” of the in-

dependent collisions, only on their number, i.e., it is well defined.) Note

that Pl
D(n) is defined for l ≥ 1 and max(0, l − T) ≤ n ≤ l − 1. We can

define PD = 0 elsewhere. We will then require Pl
D(n) ≤ p∗, where p∗

is a threshold acceptance probability. As explained in §A.3, the choice of

p∗ can depend on the expected device population size N, e.g. p∗ = 1/(N
2)

guarantees less than one ID collision on average in the entire population.

We provide p∗ values for example population sizes in §A.3.

To calculate Pl
D(n) it suffices to calculate the probability for a random de-

vice to have exactly the same set of collisions as device D (see lemma be-

low). Therefore, analyzing Pl
D(n) is a “balls in buckets” problem. The

buckets are the T perturbation table cells (that map 1-to-1 to the T attacker

Chapter 4. Device Tracking Based on DHPS 23

Algorithm 4.2 Finding a Device ID (Phase 2)

1: procedure PHASE2
2: C ← ∅ ; n← 0 ; i← 0
3: repeat
4: i← i + 1
5: P← GETSOURCEPORTS(S′) ▷ 1st burst
6: ATTEMPTCONNECTTCP({Li})
7: P′ ← GETSOURCEPORTS(S′) ▷ 2nd burst
8: w← ιx(P′x − Px > 1) ▷ |{x|P′x − Px > 1}| = 1
9: if DEFINED(Bw) then ▷ A collision was found

10: C ← C ∪ {(Li, Bw)}
11: ▷ Add the (single) independent pair to C
12: n← n + 1
13: else
14: Bw ← Li

15: until n ≥ n∗i
16: ▷ This is equiv. to Pi

D(n) ≤ p∗ (§A.3)
17: l ← i
18: return (C, l)

3-tuples from phase 1), and the balls (in iteration l of phase 2) are the loop-

back 3-tuples that are mapped to the perturbation table cells. However,

when looking at two devices, D and D′, the attacker has no way to map

the buckets between the devices. The only information the attacker can

consider is collisions among the balls, i.e., which balls (loopback 3-tuples)

fall into the same bucket in both devices. We call this the “structure” of

collisions. More formally, we define the structure of collisions in D (af-

ter l iterations) as follows: in a device D, we have l − n occupied (non-

empty) buckets Bi, and we have a set Ci of loopback 3-tuples in Bi such

that |Ci| = mi, and of course ∑i mi = l. The collision structure in D then is

the set of sets {C1, . . . , Cl−n}.

For two devices D′ and D to have the same structure, we look at the first

loopback 3-tuple in each bucket – denote fi as the first loopback 3-tuple

Chapter 4. Device Tracking Based on DHPS 24

in bucket Bi. When building the bucket for D′, we start with all-empty

buckets. The first loopback 3-tuple f ′1 in B′1 can pick any bucket, thus the

probability to succeed in matching the structure of D is T
T = 1. The first

loopback 3-tuple f ′2 in B′2 has probability T−1
T to match D’s structure, since

it must not hit the first bucket B′1, and so forth. So the combined proba-

bility of all first loopback 3-tuples in their buckets to match D’s structure

is ∏l−n−1
i=0 (1 − i

T). The remaining loopback 3-tuples must each go to its

bucket in order to match, so each one has probability 1
T . Therefore,

Pl
D(n) =

∏l−n−1
i=0 (1− i

T)

Tn

Interestingly, this probability does not depend on (m1, m2, . . .) of the struc-

ture – it only depends on the total number of independent collisions, n.

This means that Pl
D(n) is well defined. In order not to lump together two

sets with the same n but different l values, l is part of the device ID.

We now show that Pl
D(n) that we just calculated describes the probability

for a random device to have the same device ID as D. This is proved by

this lemma:

Lemma 4.3.1 If device D’ has the same collision structure as in the device ID of

device D, then D’ and D must have an identical device ID.

Proof. For device D’ to have the same device ID as device D, we also need

the number of iterations to match – i.e., we need to show that l′ = l. Recall

that the phase 2 algorithm stops as soon as it reaches an iteration l that

fulfills the condition Pl
D(n) ≤ p∗. Also, the order of loopback 3-tuples the

algorithm tests is deterministic. Therefore, the algorithm for D’ will stop

at exactly the same number of iterations as D.

Chapter 4. Device Tracking Based on DHPS 25

4.4 Further Improvements

Phase 1 and 2 dwell time optimization. The phase 1 algorithm, as de-

picted in Algorithm 4.1, is carried out entirely on the client-side. However,

the client cannot obtain the TCP source ports of the TCP connections it at-

tempts to establish with the tracking server (JavaScript code running in

the browser has no way of accessing TCP connection information). This

information is only available at the tracking server. Thus, the client and

the server need to engage in a “ping-pong” of information exchange. This

exchange is depicted in procedure GETSOURCEPORTS of Algorithm 4.1,

where the client attempts to establish multiple TCP connections with the

server, and the server returns a map from destinations to their TCP source

ports. This ping-pong does not need to follow the exact form of Algo-

rithm 4.1. In particular, there is no need to collect the TCP source ports of

the first burst before sending the second burst. The two bursts can be sent

one after another without pausing, as long as the client-side (OS) sends

the bursts in the order the client prescribes. Similarly, the third burst can

be sent by the client immediately after the second burst, since there is no

need to synchronize with the server after the second burst is emitted. Note

that in Algorithm 4.1, proceeding to the next iteration requires the client to

know which destination addresses to add to S′ (the set of unique attacker

3-tuples). Thus, moving across iterations requires the client and server to

synchronize.

The same argument can be applied to phase 2 (Algorithm 4.2). In essence,

this algorithm can run almost asynchronously between the client and the

server. The client only ensures that the bursts are distinguishable at the

server-side (see below). We further optimize by moving the termination

Chapter 4. Device Tracking Based on DHPS 26

logic to the server and having the client run through the iterations over

Li and only carry out TCP connection attempts. Thus, for each new itera-

tion, the server collects the source ports and updates the attacker 3-tuple

cell (Bw), the device ID (C), and the number of independent pairs (n). It

also checks the termination condition and signals the client to stop when

it is met. In this scheme, the client does not need to wait for the server’s

response after each burst. Hence, the client is free to make a significant op-

timization, entirely getting rid of the first burst in each iteration, since the

server can use the previous “second” burst just as accurately. The phase 2

algorithm then becomes Algorithm 4.3.

Burst separation. The optimization just described mandates the server

to separate the traffic back into bursts since packets might be re-ordered

by the network. Now that the client and server are not synchronized, this

task is a bit more challenging. The client controls the timing on its end,

i.e., a burst is followed by loopback traffic, followed by another burst, etc.,

precisely in this order. On the server-side, we can separate bursts using the

source port itself. When we look at all the traffic to a certain destination

(port), we can deduce the order of sending by sorting the packets by their

TCP source port, which is monotonously increasing with the sending time

(by the properties of the DHPS algorithm). So the packet with the lowest

TCP source port (for a specific server port destination) belongs to the first

burst, the second packet – to the second burst, etc. That being said, source

ports may wraparound if offset + tableindex exceeds num ephemeral. To ac-

count for that, we begin by normal sorting and then find the wraparound

point by looking for a large enough difference that has been created as a

result of the wraparound.

Chapter 4. Device Tracking Based on DHPS 27

Algorithm 4.3 Finding a Device ID (Phase 2, Optimized)

1: procedure PHASE2-SERVER
2: C ← ∅ ; n← 0 ; i← 0
3: P← COLLECTSOURCEPORTS(S′)
4: repeat
5: i← i + 1
6: P′ ← COLLECTSOURCEPORTS(S′)
7: w← ιx(P′x − Px > 1) ▷ |{x|P′x − Px > 1}| = 1
8: if DEFINED(Bw) then ▷ A collision was found
9: ▷ Add the (single) independent pair to C

10: C ← C ∪ {(Li, Bw)}
11: n← n + 1
12: else
13: Bw ← Li

14: P← P′

15: until n ≥ n∗i
16: ▷ This is equiv. to Pi

D(n) ≤ p∗ (§A.3)
17: SIGNALCLIENTSTOP()
18: l ← i
19: return (C, l)
20: procedure PHASE2-CLIENT
21: SENDBURST(S′)
22: for i = 1 to lmax do
23: ATTEMPTCONNECTTCP(Li)
24: SENDBURST(S′)

Minimizing number of bursts. We modify the phase 2 algorithm to

group several loopback 3-tuples together, sandwiched between attacker-

directed bursts. Let α be the number of loopback 3-tuples in a group. (In

our implementation, α = 4.) Our modified algorithm reduces the number

of phase 2 iterations by a factor of α. Let L0, L1, . . . , Lα−1 be the loopback

3-tuples in a single group. The idea is to vary the number of connections

made for each loopback 3-tuple in a group, and have the tracking server

differentiate between the loopback 3-tuples in the group by the magnitude

of the difference between its two sampled measurements. Our algorithm

Chapter 4. Device Tracking Based on DHPS 28

makes β× 2i connections to Li (β = 50 in our implementation).

Denote by ∆w the difference between the two source port measurements

collected by the server for attacker 3-tuple w. With α = 1, it is the same as

described until now: L0 shares the same table cell as an attacker 3-tuple w

for which ∆w = β + 1. With α = 2, there are two possibilities: either L0

and L1 each map to different attacker 3-tuples w0 and w1, or both collide

with the same attacker 3-tuple w (i.e. w = w0 = w1). In the former case,

the server will detect that ∆w0 = β + 1 and ∆w1 = 2β + 1. The difference

for w1 is larger since the number of connections attempted for L1 is twice

as much as L0. In the latter case, where w0 = w1 = w, the server will detect

that for a single w it has ∆w = 1β + 2β + 1 = 3β + 1. Thus, it concludes

that the two loopback 3-tuples in the group must share the same table cell.

This argument can be extended to higher values of α, see below.

Robustness against organic TCP connections. Organic TCP connections

from the device spread uniformly across the T cells of the perturbation ta-

ble and are thus unlikely to significantly affect a single cell in the short

time our attack runs. Yet, such connections noise the server’s measure-

ments and we robustify our technique against such noise.

The phase 1 algorithm already handles noise: say w ∈ Si is a unique at-

tacker 3-tuple and that some organic TCP connections were intertwined

between the two source port measurements for w. If those TCP connec-

tions share the same table cell as w, then ∆w > 1. In this case, the algorithm

determines that w is not unique. It does not compromise correctness: the

algorithm continues iterating until covering all table cells.

In phase 2, we cannot rely on an algorithm that searches for precise dif-

ferences so we add safety margins. Specifically, we segment the differences

Chapter 4. Device Tracking Based on DHPS 29

space to 2α disjoint segments I0, I1, . . . , I2α−1, where Ik = [kβ + 1, (k + 1)β].

Our algorithm then maps each attacker 3-tuple to a segment. The idea

is that since the noise is typically small enough, it will cause the differ-

ence to be slightly above the “noiseless” expected value kβ + 1, but still

below (kβ + 1) + β, i.e., < (k + 1)β + 1. In other words, the difference will

still belong to the segment [kβ + 1, (k + 1)β]. Thus, given a difference in

segment [kβ + 1, (k + 1)β], we determine that it is a result of kβ loopback

connections, and from the binary representation of k we can reconstruct

which Li’s were mapped to this w. These are precisely the Li’s in which 2i

appears as an addendum in the deconstruction of k into a sum of powers

of two. To summarize, our phase 2 algorithm maps a loopback 3-tuple Li

to attacker 3-tuple w if and only if the i-th bit in the binary expansion of

kw (the segment number of w) is one.

4.5 Performance Analysis

Number of Iterations

We analyze the run-time (in terms of iterations) of phase 1 and of phase 2

in §A. For example, for T = 256 (the Linux case), phase 1 (Algorithm 4.1)

needs 13.8 iterations on average to conclude. For T = 256 and a popula-

tion of N = 106 devices, in order for the average ID collision count to be

lower than one for the entire population, phase 2 (Algorithm 4.2 or Algo-

rithm 4.3) needs 49.5 iterations on average to conclude. For a population

of N = 109, phase 2 takes on average 60.4 iterations to conclude, and for

N = 1012, 69.9 iterations on average.

Chapter 4. Device Tracking Based on DHPS 30

Dwell Time

In terms of dwell time (how long the browser needs to remain on the page

for the process to complete), in phase 1 (Algorithm 4.1), each burst in a

single iteration can be sent without waiting to the server’s response. How-

ever, at the end of each iteration, the browser needs to wait for the server’s

response (the server updates the client on which ports should be used in

the next iteration). Therefore, for phase 1, the required dwell time is the

time needed for the browser to emit the 3 bursts, plus RTT, times the num-

ber of iterations. For phase 2 (Algorithm 4.3), the client and the server are

not synchronized per iteration. Therefore, the dwell time is the time to

emit the 2 bursts, times the number of iterations.

Device Bandwidth Use

In terms of packet count (and network byte count), iteration i of phase

1 emits |Si| + |S′i−1| + |Si| packets. Since |Si| = T − 1 and 0 ≤ S′i−1 ≤

T − 1, we have the packet count in each iteration between 2(T − 1) and

3(T − 1). Each iteration of phase 2 (Algorithm 4.3) consists of T packets

(we do not count the loopback packets as they do not consume physical

network resources). Each packet in a burst is a TCP SYN which has a

minimal size (Linux TCP SYN is 60 bytes over IPv4 and 80 bytes over

IPv6).

5 Implementation

Recent Linux kernels (versions 5.12-rc1 and above) use DHPS from RFC

6056 to generate TCP source ports. The implementation includes a few

modifications to the RFC algorithm and parameter choice (§5.1) that re-

quire some adaptations of our technique (§5.2). We conclude this section

by describing our implementation (§5.3).

5.1 Linux’s DHPS Variant

Perturbation table. The Linux implementation has

T=TABLE LENGTH=256. The values of the perturbation table are incre-

mented by 2 (instead of 1), but this is immaterial to the attack. To simplify

presentation, we ignore this detail for the rest of the discussion. Linux’s

implementation of CHECKSUITABLEPORT verifies that the port is not lo-

cally reserved, and that the 4-tuple it forms, (IPSRC, port, IPDST, PORTDST)

is not already in use in the current network namespace (container). In

Linux, |K2| = 128.

Noise injection. A significant modification in the Linux implementa-

tion is that it randomly injects noise to the perturbation table when

31

Chapter 5. Implementation 32

inet hash connect() finds a suitable candidate in the first iteration of

Algorithm 3.1. The relevant table cell is then incremented twice (instead

of once) with probability 1
16 .

5.2 Adapted Phase 2 Algorithm

The phase 1 algorithm already handles noise caused by organic TCP con-

nections, as described in §4.4, so noise injected by Linux is handled iden-

tically. The adapted phase 2 algorithm should map the correct attacker

3-tuple for any given loopback 3-tuple, despite any noise injected by the

kernel. We already describe in §4.4 how the phase 2 algorithm can handle

some noise (up to β additional table cell increments on top of the expected

ones, per a table cell associated with an attacker 3-tuple w). Recall, we

strive to use as high as possible an α value since it reduces the run-time

of phase 2. Thus, we seek to make α as large as possible while keeping β

higher than the noise induced by the device’s Linux kernel and sporadic

TCP connections.

The noise is maximal when w corresponds to a table cell which has a total

of (2α− 2)β connections. (The hardest task is to distinguish segment [(2α−

2)β+ 1, (2α− 1)β] from [(2α− 1)β+ 1, 2αβ].) The amount of noise for (2α−

2)β has a binomial distribution Bin((2α− 2)β, 1
16). To support a population

of 106 devices, we want an error probability of 10−6 to correctly find all the

Li values in a given device, which requires all 64
α iterations of phase 2 to

succeed. (Our implementation tests 64 loopbacks in phase 2, see §6.4.)

Therefore, we require Prob(Bin((2α − 2)β, 1
16) ≥ β) ≤ α

6410−6. For α = 4,

this yields β ≥ 1244 which is impractical since this implies 1244× (24 −

1) = 18 660 connections to be made for each group of loopback 3-tuples.

Chapter 5. Implementation 33

We now show how we can tweak the algorithm to support α = 4 with

a low β value. For this, we observe that there is exactly one w where

∆w ≥ 2α−1β; it is exactly the w that shares the counter with Lα−1. All

other Li’s together cannot contribute more than (2α−1− 1)β to any counter.

Thus, if we put the w whose ∆w ≥ 2α−1β aside, we are left with dif-

ferences which are ≤ (2α−1 − 1)β. This upper-bound forms the worst

case, with the noise distribution Bin((2α−1 − 1)β, 1
16). Again we require

Prob(Bin((2α−1 − 1)β, 1
16) ≥ β) ≤ α

6410−6. This time, for α = 4, we get

β ≥ 50. Using β = 50 results in a manageable number of connections.

To summarize, we put aside the w whose ∆w ≥ 2α−1β, we find Li’s that

belong to all other w’s and associate all the remaining Li’s (which were

not associated to any other w) to the w whose ∆w ≥ 2α−1β. This technique

allows using α = 4 with β = 50 to support 1 million devices. The value β

grows slowly with the number of supported devices, e.g., supporting 1B

devices requires β = 73.

5.3 Device Tracking Technique Prototype

We implemented a proof-of-concept of our device tracking technique. The

client (snippet) is designed to run on both Chrome and Firefox and is im-

plemented in approx. 300 lines of JavaScript code. We also implemented

a client in Python that helped us during development and testing. The

server is implemented in approx. 1000 lines of Go code. We describe key

aspects of our implementation below and provide additional, more minor,

implementation details in §5.4.

The client and server exchange information via HTTP. In our implemen-

Chapter 5. Implementation 34

tation, the server acts as a “command-and-control” host: the client runs

in a loop, requests the next command from the server, and executes it.

This shifts much of the complexity from the client to the server and makes

it easier to update the implementation without changing a complicated

JavaScript implementation for multiple browsers.

Chrome and Firefox clients. Our client implementation for Google

Chrome emits bursts of TCP connections by utilizing WebRTC.

The client passes the list of destinations as a configuration for

the RTCPeerConnection object and triggers the burst with the

setLocalDescription() API. The advantage of WebRTC, compared

to standard XMLHttpRequest or fetch() APIs, is that it allows to create

connections at a rapid pace, which helps decreasing the overall dwell

time. For Firefox, WebRTC is not applicable, since its implementation

invokes bind() on the sockets before it calls connect() (see §5.4.1).

Instead, our Firefox implementation uses XMLHttpRequest.

Tracking server. The server uses libpcap to capture TCP SYN packets.

It associates the TCP SYN packet to an active tracking client based on the

source IP address and destination port. The server also stores the source

port for later processing. For any attack-related incoming TCP SYN, our

server replies with TCP RST (+ACK), except for the HTTP/HTTPS port on

which the attacker’s web server listens, of course. This way, upon receiv-

ing the RST, the client immediately discards the socket and does not send

any further packets on it. This also has the advantage of keeping Linux’s

kernel connection table relatively vacant – otherwise, we risk hitting the

process file descriptor limit (for Chrome, the limit is 8192).

Chapter 5. Implementation 35

Handling retransmissions. When a TCP SYN is left unanswered,

Linux retransmits the SYN packet. This has the potential to confuse

our server by having more source ports measurements than expected.

The Linux retransmission timeout is 1 second (TCP TIMEOUT INIT in

include/net/tcp.h). Therefore, we might encounter this situation de-

pending on the client’s network and the RTT to the tracking server. To

cope with retransmissions, the server deduplicates the TCP SYN packets

it receives based on the combination of source IP, source port, and desti-

nation port fields.

5.4 Minor Implementation Details

5.4.1 Supporting Firefox

WebRTC vs. XmlHttpRequest Linux uses the revised DHPS for assign-

ing TCP source ports when connect() is invoked with an unbound socket.

This is the standard practice for establishing TCP connections from a

client. However, it is also technically possible to establish a TCP connec-

tion from a client by first invoking bind() on a socket with a zero local port

(instructing the kernel to pick a source port for the socket), and then ap-

plying connect() to it. When bind() assigns a source port number to the

socket, the kernel has no information regarding the destination, and there-

fore it cannot use DHPS. Instead, Linux uses Algorithm 1 of RFC 6056 in

this case. While not intended to be used by TCP clients, Firefox does in fact

use bind() for its WebRTC connections. Therefore, in Firefox we resort to

using XmlHttpRequest, which emits HTTP/HTTPS requests.

Chapter 5. Implementation 36

Re-connect attempt at the HTTP level When Firefox’s HTTP connection

attempt fails or times out, Firefox retries the connection at the HTTP level,

i.e. it tries to establish a new TCP connection (as opposed to a kernel retry

which uses the original connection parameters). These additional TCP

connection attempts with their newly-generated TCP source ports can-

not be easily distinguished from the expected TCP connection attempts.

The phase 1 algorithm might be affected from re-connections when an at-

tacker 3-tuple receives > 2 source port measurements. In such a case, the

algorithm cannot analyze the attacker 3-tuple, and should discard it (in

the present round), so that it is would not be flagged as “unique”. The

phase 2 algorithm was modified too: the client contacts the server after

each group of loopback 3-tuples are tested (instead of after all groups).

Further, for each burst of TCP connections the client makes, it also waits

for each connection to complete (in contrast to the Chrome implementa-

tion). This prevents concurrent loopback connections and re-connections,

which may corrupt source port measurements. Computing ∆w is a bit

more complicated, since as a result of re-connections, we might get > 2

source port measurements (more than expected). Consequently, we com-

pute the difference between consecutive source ports measured, and set

∆w to the maximum difference. We expect all consecutive differences to

be 1 (up to some noise), except a single consecutive difference, which will

correspond to the loopback increment we seek. This is because we do not

allow re-connection attempts to overlap with the loopback connection at-

tempts. For example, if we get 4 source port measurements s0, s1, s2, s3

then we set ∆w = max(s1 − s0, s2 − s1, s3 − s2). The algorithm continues

normally from this point onward.

Chapter 5. Implementation 37

5.4.2 Private Network Access

The Private Network Access draft standard [27], which is implemented in

Chrome, does not block our attack. If the snippet page is served over a

secure context (HTTPS), then for XHR requests to loopback addresses, the

browser will first attempt to send pre-flight HTTP OPTIONS requests to

these destinations. These TCP connection attempts (SYN packets) to the

loopback addresses suffice for our attack. Moreover, the Private network

Access standard only applies to HTTP protocol traffic, and therefore We-

bRTC traffic to loopback addresses is not covered by it.

5.4.3 Scalability

In principle, the technique can scale very well. A technical limitation

we need to consider is that we can only associate up to 65455 ports per

(IPSRC, IPDST) address pair (the port range is 1-65535, with some 80 ports

blocked by Chrome). This is not an issue for clients coming from different

IP addresses. However, it may be a limitation when multiple clients be-

hind one IP (NAT). We can address it by using more server IP addresses

and load balance clients.

To maximize the gain from each server IP address, it should carefully man-

age the assignment and release of ports from a per-client-IP pool. In phase

1, each client consumes at most 2(T − 1) destination ports during each

iteration. In each iteration of phase 1, a batch of T − 1 new destinations

(ports) can be obtained from the server in real time (assigned from the

pool). When the iteration is complete, the server determines which des-

tinations are added to the client’s list, and which are released back to the

Chapter 5. Implementation 38

pool. Phase 1’s worst case for ongoing consumption is T − 1 ports (the

client’s expanding list). In phase 2, each client consumes exactly T desti-

nations (the full client list, from phase 1). This list of destinations is allo-

cated to the client for several seconds (the duration of phase 2). Thus, the

peak consumption for each client is 2(T− 1), so the algorithm can sustain
65455

2(T−1) simultaneous clients (with the same IP address) per server IP ad-

dress. For T = 256, the server can sustain 128 clients (behind NAT) per

server IP.

5.4.4 Handling packet drops

Packets may get dropped in a network due to congestion or routing

changes. We adapt the tracking server to withstand moderate packet loss.

First, we detect that there are too few packets for a specific attacker 3-tuple.

Then, we find the burst for which the packet is missing by timing analysis:

the largest time difference between captured packets is probably where a

packet is missing. For the burst where the packet is missing, we may still

find the attacker 3-tuple for loopback address Li by examining if there is a

valid gap in TCP source ports of another attacker 3-tuple. If not, we rerun

the test for this loopback address.

6 Evaluation

We use our proof-of-concept implementation to evaluate the device track-

ing technique against Linux-based devices. Our experiments answer the

following questions:

1. Do we get a consistent device ID across browsers, tabs, and browser

privacy modes?

2. Do we get a consistent device ID across networks, in both IPv4 and

IPv6, across containers, and across VPNs?

3. Do we get a consistent device ID when the user browses other sites

during the attack?

4. What is the dwell time required by our attack?

5. Is the attack applicable to Android devices?

6. How does the attack scale in terms of CPU and RAM? Is it suitable

for large-scale tracking?

Setup. We deploy our tracking server in two Amazon EC2 regions:

eu-south-1 (IPv4 and IPv6) and us-west-2 (IPv4 only). Each server is

a t3.small instance, with 2 vCPU cores, 2GB of RAM and 5Gbps network

link.

39

Chapter 6. Evaluation 40

We tested three Ubuntu 20.04 Linux client devices: (i) HP Spectre x360 lap-

top (Intel Core i7-7500U CPU with 16GB of RAM) with kernel v5.13.19; (ii)

ASUS UX393EA laptop (Intel Core i7-1165G7 CPU with 16GB RAM) with

kernel v5.15.11; and (iii) Intel NUC7CJYH mini-PC (Intel Celeron J4005

CPU, 8GB RAM) with kernel v5.15.8.

6.1 Browsers

We demonstrate that we get a consistent device ID with our client snippet

on Google Chrome (v96.0.4664.110) and Mozilla Firefox (v96.0) browsers

(the latest versions at the time of writing). Since Chrome dominates the

browser market, our optimizations are geared towards it.

We tested Chrome with our two tracking servers, both on IPv4 and IPv6.

We verified that we get a consistent device ID across multiple tabs and

browser modes, i.e., regular mode and incognito mode (one of the goals

of this mode is to bolster privacy by thwarting online trackers). For Fire-

fox, we verified that the modified tracking technique as depicted in §5.4.1

works over the Internet and that the ID is identical to the one obtained via

Chrome (cross-browser consistency).

6.2 Networks, NATs, VPNs and Containers

Our attack targets the client device, which operates in a variety of envi-

ronments. It might access the Internet via a VPN, run the browser in a

container or use a network behind a NAT. This section evaluates whether,

and to what extent, these environments affect our attack.

Chapter 6. Evaluation 41

Network Port
Rewriting? Throttling? IPv4 / IPv6

EduRoam No No ✓/ NA
University Guest Yes No ✗/ NA
Landline ISP 1 No No ✓/ ✓
Landline ISP 2 No No ✓/ NA
Landline ISP 3 No No ✓/ NA
Landline ISP 4 No IPv4 only ✓*/ ✓
Cable ISP 1 Yes No ✗/ NA
Cellular ISP 1 IPv4 only IPv4 only ✗/ ✓
Cellular ISP 2 IPv4 only IPv4 only ✗/ ✓
Cellular ISP 3 No Yes ✓*/ NA
* With slowed-down TCP SYN bursts.

Table 6.1: Tested networks

Networks and NATs. We tested our attack on multiple networks, on

both landline and cellular ISPs, with IPv4 and IPv6. Table 6.1 summa-

rizes our results. Our technique yielded a consistent ID for all tested

networks which support IPv6. With IPv4, we found that some networks

rewrite the TCP source port value (probably due to in-path port-rewriting

NATs). Since our attack relies on observing the device-generated TCP

source ports, it failed to obtain an ID on such networks. For IPv4 net-

works that do not rewrite TCP source ports, and for a given device, we

got a consistent device ID, identical to the ID obtained from IPv6 networks

for the same device (cross-network consistency, including cross IPv4/IPv6

consistency).

NATs are generally deployed on customer premise equipment (CPE) or

at the ISP; the latter is often referred to as carrier-grade NAT (CGN). Im-

portantly for our attack, many NAT implementations preserve the clients’

TCP port selection. Mandalari et al. [20, Table I] showed that 78% of the

tested NATs preserve TCP source ports. Their study covers over 280 ISPs

Chapter 6. Evaluation 42

that used 120 NAT vendors. Richter et al. [26] found that 92% of the CPE

NATs they have identified in non-cellular networks preserve TCP source

ports. For CGN deployments, Richter et al. found that on cellular net-

works, port preservation is less common: about 28% of the cellular net-

works with CGNs exhibit such a behavior. Among the non-cellular ISPs

that use CGNs, 42% preserve ports. These measurements are in-line with

our tested networks in Table 6.1.

Another issue we faced, mainly with cellular IPv4 ISPs, is traffic throttling

(see Table 6.1). Such networks limit the packet rate of our TCP SYN bursts

by dropping some packets. This may be due to traffic shaping or security

reasons (SYN flood prevention). To address this problem, we spread our

TCP SYN bursts over a longer time, thus increasing the overall dwell time

of our technique.

VPNs. We tested our technique with a client device that is connected to

an IPv4 VPN. We examined two popular VPN providers: TunnelBear VPN

and ExpressVPN. In both cases, we set up a system-wide VPN configura-

tion using Ubuntu’s Network Manager. We note that the vast majority of

VPNs (in particular, the two VPNs we tested) do not support IPv6 [31].

We tested two locations with TunnelBear VPN, Germany and Finland, and

found that the TCP source ports are preserved. However, TunnelBear’s

exit nodes throttle the outbound VPN traffic, so we expect the attack to

work with slowed-down bursts. For ExpressVPN, our attacks succeeded

on 7 out of 10 exit nodes tested in North America and Western Europe.

The failed attempts were due to TCP port rewriting. The device ID we

obtained through VPNs was identical to the one obtained when the device

was using a regular network, and the dwell time we experienced with

Chapter 6. Evaluation 43

ExpressVPN was comparable to a regular network with the same RTT. We

conclude that, in many cases, VPN exit nodes do not rewrite TCP source

ports, which allows our technique to work. This demonstrates that VPNs

do not inherently protect against our technique.

Linux containers. We deployed two docker containers on the same host

and ran our Python client implementation on each. Both runs produced

the same device ID, identical to the host device ID, as expected (cross-

container consistency). We conducted the experiment with containerd

version 1.4.12, runc version 1.0.2 and docker-init version 0.19.0.

6.3 Active Devices

In this experiment, we demonstrate that a consistent device ID is obtained

when the client simultaneously visits other websites during the attack. To

this end, we opened multiple tabs on Chrome during the attack and vis-

ited sites that are listed under Alexa’s Top 10 Sites. On each test, we arbi-

trarily chose 3 to 4 websites from the list (this includes “resource-heavy”

sites such as Yahoo, YouTube, and QQ). In all of our tests, we verified that

we get a consistent device ID, concluding that our technique successfully

withstands organic TCP connections generated by the victim device dur-

ing the attack.

6.4 Dwell Time

The dwell time is the execution time of our attack, the sum of phase 1 and

2 completion times. Phase 1 completion time is affected by the number of

Chapter 6. Evaluation 44

iterations it takes to collect T unique attacker 3-tuples. The measured av-

erage is 15 iterations, which is expected to be slightly higher than the the-

oretical average of 13.8 iterations we computed in §A.2 due to the Linux

injected noise (see §5.1). The network round trip time (RTT) to the track-

ing server also affects phase 1’s completion time since, at the end of each

iteration, the client contacts the server to determine which of the attacker

3-tuples tested in this iteration are unique. Phase 2’s completion time is

mainly affected by the number of loopback groups tested. In our imple-

mentation, we tested a fixed number of 64 loopback groups. The RTT has

significantly less impact on phase 2 since we do not wait for server re-

sponses.

We measured the dwell time for our Chrome client when using α = 4 and

β = 50 (see §4.4) against our two tracking servers. With an average RTT of

50ms, we measured an average dwell time of 7.4 seconds. With an average

RTT of 275ms, we measured an average dwell time of 13.1 seconds. Over-

all, our results for Chrome show a dwell time of 5-15 seconds (10 seconds

on average).

For Firefox, the dwell time is on the order of several minutes, even un-

der lab conditions, because of in-browser throttling. For this reason, our

implementation uses more balanced values for α, β: α = 2 and β = 10.

Lowering the β value for Firefox has an advantage since the number of

connections to the loopback interface (on phase 2) decreases, hence mak-

ing the attack run faster under throttling. We have not attempted optimiz-

ing our Firefox implementation further.

Chapter 6. Evaluation 45

6.5 Android

At the time of writing, there is no Android device that uses DHPS (see

the discussion on §3). To verify that the attack is applicable to Android,

we manually introduced the DHPS code into the 5.4 kernel of a Samsung

Galaxy S21 device. (Linux’s DHPS implementation is conveniently located

in one file, making this change self-contained.)

During our experiments with the Samsung device, we observed a

netfilter rule that limits the rate of incoming new TCP SYN packets to

an average of 50 per second. This rule limits our attack in phase 2 when

many connections to the loopback interface are attempted (an outgoing

TCP SYN packet in the loopback interface eventually becomes an incom-

ing TCP SYN packet, which is subject to this rule). To work around this

restriction, we modified the α, β parameters of the attack to α = 2 and

β = 10. This results in 10 + 2× 10 = 30 loopback connections being at-

tempted for each loopback group, which is below the limit imposed by this

rule. With this configuration, our lab experiments show that the attack on

Chrome yields a consistent device ID when the device switches networks,

with a dwell time of 18-21 seconds.

We presume that the offending rule (causing us to adjust the attack) is not

general to Android but rather, it is Samsung-specific since we did not find

evidence of it in the Android Open Source Project (AOSP) code.

Chapter 6. Evaluation 46

6.6 Resource Consumption

Server side CPU utilization. The tracking server needs very little CPU

resources. In both phases, the server-side calculation simply involves go-

ing over the iteration data and finding the port pairs in which the differ-

ence is above some threshold.

Server side RAM consumption. While computing an ID for a device,

the tracking server needs to keep (i) a list of allocated destination ports;

and (ii) the most recently observed source port per each destination port.

In the worst case, the list can be up to 2T pairs of ports (with T = 256, the

maximum list length is 512). Each port number is 16 bits, so each port pair

takes 4 bytes, and overall the server needs up to 8T = 2KB per actively

tested device. Suppose the device dwell time is W seconds, and the rate

of devices per second incoming funnel is R, then at a given moment, there

will be R ·W tested devices, which requires 8T · R ·W bytes. For Linux-

based devices using Chrome, we have T = 256, W = 10s, so the tracking

server RAM consumption is R · 20KB per device. For example, if R = 106

devices/sec, the server needs 19.07GB RAM. Keep in mind that R does

not represent the total number of devices the server needs to support, it is

only the rate at which the server is required to measure devices (which is

much lower than the total number of supported devices).

Client side CPU utilization. In our experiments, CPU utilization by our

tracking logic was negligible.

Client side RAM consumption. Most of the client-side RAM consump-

tion imposed by our tracking snippet is due to attempting to create TCP

Chapter 6. Evaluation 47

connections. In the attack, the tracking server responds with TCP RST,

prompting the victim’s browser and kernel to release this memory quickly.

In an experiment, we measured an overhead of at most 30MB in client

memory (tested on Chrome), which is sufficiently low to allow the attack

even on low-end devices.

7 Countermeasures

The root cause of our attack is the ability to detect hash collisions in GK2 via

a shared perturbation table cells. The ideal solution would be to create a

private perturbation table instance per network namespace and interface.

By doing so, we prevent the attacker’s ability to detect “stable” hash colli-

sions (on the loopback interface). The problem with this solution is that its

memory consumption could be high when many containers are spawned,

or many interfaces are present.

To mitigate the attack when the perturbation table is shared across inter-

faces, DHPS must ensure that either hash collisions are much less frequent

or that detecting collisions is much more difficult. In line with the above,

we propose below modifications to DHPS and summarize how they were

applied to the Linux kernel in a recent patch to mitigate our attack. We also

analyze in §C an alternative algorithm proposed by RFC 6056, “Random-

Increments Port Selection Algorithm” (Algorithm 5, [15, Section 3.3.5]),

showing that the trade-off it offers cannot simultaneously meet the func-

tionality and security goals from [15, Section 3.1] (see §3).

Increase the table size T. This makes hash collisions much less frequent.

For example, instead of T = 256 we can use T = 256K = 262, 144. This

48

Chapter 7. Countermeasures 49

consumes 0.5MB of RAM (assuming each table entry is 16 bits). The attack

now takes ×1024 time due to the need to cover all T table cells. (In the

patch issued for Linux, T was increased to 64K.)

Periodic re-keying. Changing the secret key in DHPS results in a differ-

ent table index being accessed and a different port offset from which can-

didate enumeration will begin. After re-keying, any table collision infor-

mation previously obtained by an attacker becomes useless. The trade-off

is that a source port that was previously chosen for the same 3-tuple could

be chosen again. This might prevent a TCP connection from being estab-

lished (see §3). To reduce the chance for connectivity issues, re-keying

should not be performed too frequently. (In the patch issued for Linux,

re-keying is performed every 10 seconds, balancing functionality and se-

curity.)

Introduce more noise. The Linux kernel team also increased the noise in

perturbation table cell increments to make detecting collisions more dif-

ficult. Now, each increment is an integer chosen uniformly at random

between 1 and 8.

7.1 Network Security Measures

Besides mitigating our attack at its core (the DHPS algorithm), network

security appliances such as firewalls, IDS, or IPS could thwart it to some

degree. Since our attack requires a non-negligible number of connection

attempts to the same set of attacker destinations, a network security ap-

pliance could detect this condition and limit future connection attempts

Chapter 7. Countermeasures 50

to those destinations. This would require the attacker to slow the rate of

connection attempts, presumably to the point where the attack becomes

impractical. Crucially, however, by doing so, the security appliance might

flag legitimate traffic as malicious: for example, when multiple users be-

hind NAT enter a resource-heavy website in a short time span.

A better mitigation strategy would be to use on-host logic, which can be

part of a host IPS (HIPS) solution, a personal firewall, or in-browser secu-

rity logic. The on-host logic can detect the internal loopback traffic that is

generated as a result of our attack and rate limit TCP connection attempts

to closed ports on the loopback interface. We do not expect standard appli-

cations to exhibit similar behavior, making this countermeasure effective

and with a low false-positive rate.

8 Conclusion

This thesis illustrates a flaw in the DHPS algorithm for selecting TCP

source ports – an algorithm which was proposed by RFC 6056 and re-

cently adopted by Linux. We exploit this algorithm to track Linux devices

across networks, browsers, browser privacy modes, containers, and VPNs.

The key observation of this thesis is that the attacker can detect collisions

in the output of a keyed hash function used in DHPS via sampling, in an

attacker-prescribed manner, TCP source ports generated from the global

kernel state induced by DHPS. By indirectly observing such collisions for

loopback 3-tuples inputs, the attacker calculates an invariant device ID (ag-

nostic to the network the device is connected to) since it only relies on the

secret hashing key which is generated at system startup. Interestingly, this

result does not rely on the choice of the hash function, because the hash

function’s output space is small enough for collisions to happen naturally

even in a very moderate number of TCP connections. We implement the

attack for Linux devices and Chrome and Firefox browsers, and demon-

strate it across the Internet in practical, real-life scenarios. We propose

changes to the DHPS algorithm that mitigate the root cause of our tech-

nique. Lastly, we worked with the Linux kernel team to integrate counter-

measures into the Linux kernel, which resulted in a recent security patch.

51

9 Vendor Status

We reported our findings to the Linux kernel security team on February

1st, 2022. In response, the Linux team developed a security patch which

was incorporated in versions 5.17.9 (and above) and 5.15.41 (the LTS ver-

sions that include DHPS). The Linux kernel issue is tracked as CVE-2022-

32296.

52

Bibliography

[1] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda

Gürses, Frank Piessens, and Bart Preneel. FPDetective: dusting

the web for fingerprinters. In ACM CCS ’13, pages 1129–1140,

2013.

[2] Jonathan Berger, Amit Klein, and Benny Pinkas. Flaw Label:

Exploiting IPv6 Flow Label. In 2020 IEEE Symposium on Security

and Privacy (SP), pages 1344–1361, Los Alamitos, CA, USA, May

2020. IEEE Computer Society.

[3] Christian Dullweber. Expire favicons on cache deletion. https:

//chromium.googlesource.com/chromium/src/+/c1ce99f4ed5

92d25d19ab37c18d6d9512655b14a, March 2021.

[4] David Dworken and Eric Dumazet. tcp: change source port

randomizarion [sic] at connect() time, 2021.

[5] Vinay Goel. An updated timeline for privacy sandbox mile-

stones. https://blog.google/products/chrome/updated-tim

eline-privacy-sandbox-milestones/, June 2021.

53

Bibliography 54

[6] Andy Greenberg. Whatsapp just switched on end-to-end en-

cryption for hundreds of millions of users. https://www.wire

d.com/2014/11/whatsapp-encrypted-messaging/, 2014.

[7] Michael Hayden. The price of privacy: Re-evaluating the nsa.

https://www.youtube.com/watch?v=kV2HDM86XgI&t=17m51s,

2014.

[8] Sabrina Jiang. Fingerprinting with atomic counters in upcom-

ing web graphics compute apis, 2020.

[9] Amit Klein. Cross Layer Attacks and How to Use Them (for

DNS Cache Poisoning, Device Tracking and More). In 2021

IEEE Symposium on Security and Privacy (SP), pages 927–944, Los

Alamitos, CA, USA, May 2021. IEEE Computer Society.

[10] Amit Klein and Benny Pinkas. DNS Cache-Based User Track-

ing. In 26th Annual Network and Distributed System Security Sym-

posium, NDSS 2019, San Diego, California, USA, February 24-27,

2019. The Internet Society, February 2019.

[11] Amit Klein and Benny Pinkas. From IP ID to Device ID and

KASLR Bypass. In 28th USENIX Security Symposium (USENIX

Security 19), pages 1063–1080, Santa Clara, CA, August 2019.

USENIX Association.

[12] V. F. Kolchin, B. A. Sevastianov, and V. P. Chistiakov. Random

allocations / Valentin F. Kolchin, Boris A. Sevastyanov, Vladimir P.

Chistyakov ; translation ed., A. V. Balakrishnan. V. H. Winston

; distributed solely by Halsted Press Washington : New York,

1978.

Bibliography 55

[13] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk,

Pierre Laperdrix, Clémentine Maurice, Yossi Oren, Romain

Rouvoy, Walter Rudametkin, and Yuval Yarom. DRAWN

APART : A Device Identification Technique based on Remote

GPU Fingerprinting. In 29th Annual Network and Distributed Sys-

tem Security Symposium, NDSS 2022, San Diego, California, USA,

24 April - 28 April 2022. The Internet Society, February 2022.

[14] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas

Avoine. Browser fingerprinting: A survey. ACM Trans. Web,

14(2), April 2020.

[15] M. Larsen and F. Gont. Recommendations for transport-

protocol port randomization. BCP 156, RFC Editor, January

2011.

[16] Martin Lastovicka, Stanislav Spacek, Petr Velan, and Pavel

Celeda. Using tls fingerprints for os identification in encrypted

traffic. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and

Management Symposium, pages 1–6, 04 2020.

[17] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yodel: Strong

metadata security for voice calls. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles, SOSP ’19, page

211–224, New York, NY, USA, 2019. Association for Computing

Machinery.

[18] Chun-Han Lin, Shan-Hsin Lee, Hsiu-Chuan Huang, Chi-Wei

Wang, Chia-Wei Hsu, and ShiuhPyng Shieh. Dt-track: Using

dns-timing side channel for mobile user tracking. In 2019 IEEE

Bibliography 56

Conference on Dependable and Secure Computing (DSC), pages 1–8,

November 2019.

[19] Linux. /include/net/tcp.h. https://github.com/torvalds/li

nux/blob/master/include/net/tcp.h.

[20] Anna Maria Mandalari, Miguel Angel Diaz Bautista, Francisco

Valera, and Marcelo Bagnulo. Natwatcher: Profiling nats in the

wild. IEEE Communications Magazine, 55(3):178–185, 2017.

[21] Microsoft. Settings that can be modified to improve network

performance. https://docs.microsoft.com/en-us/biztalk/

technical-guides/settings-that-can-be-modified-to-imp

rove-network-performance, June 2021.

[22] Matt Nagel. Zoom launches end-to-end encryption for free and

paid users globally. https://investors.zoom.us/news-relea

ses/news-release-details/zoom-launches-end-end-encry

ption-free-and-paid-users-globally, 2020.

[23] Ben O’Neill. The classical occupancy distribution: Computa-

tion and approximation. The American Statistician, 75(4):364–

375, 2021.

[24] Android Open Source Project. Android common kernels – fea-

ture and launch kernels. https://source.android.com/devic

es/architecture/kernel/android-common#feature-and-lau

nch-kernels, May 2022.

[25] A. Ramaiah, R. Stewart, and M. Dalal. Improving tcp’s robust-

ness to blind in-window attacks. RFC 5961, RFC Editor, August

2010.

Bibliography 57

[26] Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez,

Mark Allman, Randy Bush, Anja Feldmann, Christian Kreibich,

Nicholas Weaver, and Vern Paxson. A multi-perspective anal-

ysis of carrier-grade nat deployment. In Proceedings of the 2016

Internet Measurement Conference, IMC ’16, page 215–229, New

York, NY, USA, 2016. Association for Computing Machinery.

[27] Titouan Rigoudy and Mike West. Private network access. http

s://wicg.github.io/private-network-access/, June 2021.

[28] Alan Rusbridger. The snowden leaks and the public, 2013.

[29] Konstantinos Solomos. Security: Favicon cache can reveal en-

tries through a leaky side channel, that can be used for tracking

and fingerprinting of the browser. https://bugs.chromium.or

g/p/chromium/issues/detail?id=1096660, June 2020.

[30] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason

Polakis. Tales of favicons and caches: Persistent tracking in

modern browsers. In 28th Annual Network and Distributed System

Security Symposium, NDSS 2021, virtually, February 21-25, 2021.

The Internet Society, 2021.

[31] Sven Taylor. Best vpns with full ipv6 support in 2022 (verified).

https://restoreprivacy.com/vpn/best/ipv6/, May 2022.

[32] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai

Zeldovich. Vuvuzela: Scalable private messaging resistant to

traffic analysis. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, page 137–152, New York, NY, USA,

2015. Association for Computing Machinery.

Bibliography 58

[33] John Wilander. Full third-party cookie blocking and more. http

s://webkit.org/blog/10218/full-third-party-cookie-blo

cking-and-more/, March 2020.

[34] Henrik Wramner. Tracking Users on the World Wide Web. ht

tp://www.nada.kth.se/utbildning/grukth/exjobb/rapport

listor/2011/rapporter11/wramner_henrik_11041.pdf, 2011.

Appendices

59

A Analysis of the Runtime of

Our Attack Against DHPS

Our basic work unit (or time consumption unit) is a burst of up to T pack-

ets. This is because the algorithm works by sending bursts, waiting for

the burst to be received, sampling, sending another burst, etc. The time it

takes to send the burst is typically lower than the RTT, which is why the

burst size has little impact on the overall runtime.

A.1 Calculating the Distribution of µr

We begin with calculating the distribution of µr(l) – given T bins, we

define the variable µr(l) as the number of bins that have exactly r balls

in them, after l balls are thrown at random into the bins. In later sec-

tions we will need the distribution for µ0 (also known as the “occupancy

problem”) and µ1, but our calculation technique is generic and can be

used to accurately and efficiently calculate any µr. For the special case

r = 0 (known as the “occupancy problem”), there is an explicit descrip-

tion (following the notation in [23]): Prob(µ0(l) = k) = Occ(T − k|l, T) =
1
Tl (

T
k)∑T−k

i=0 (T−k
i)(−1)i((T − k) − i)l . However, we are not familiar with

60

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 61

any explicit description of this distribution for r > 0, though there is lit-

erature that describes moments of the distribution, and some limits [12].

Here we describe an algorithm that calculates the distribution accurately

and efficiently for any T, l, r. Our technique for calculating µr provides µr′

for r′ < r as a by-product.

The idea is to calculate the probability µ∗l (i0, i1, . . . , ir) of T bins to have

exactly is bins with s balls in them (where ∑r
s=0 is ≤ T) after l balls are

thrown. We start with µ∗0(T, 0, . . . , 0) = 1 and µ∗0 = 0 elsewhere. We now

look at a transition from (i0, . . . , ir) after l − 1 balls. For s ≤ r, the l-th ball

is thrown into an a bin with s balls with probability is
T , thus contributes

µ∗l−1(i0, . . . , is, is+1, . . . , ir) is
T to µ∗l (i0, . . . , is− 1, is+1 + 1, . . . , ir). Conversely,

the l-th ball is thrown into a bin with more than r balls with probability
T−∑r

s=0 is
T , thus contributes µ∗l−1(i0, . . . , ir)

T−∑r
s=0 is

T to µ∗l (i0, . . . , ir). The vec-

tor of probabilities µ∗l is then calculated by going over all (i0, . . . , ir) events

for ball l − 1 and summing their contributions to the various (i′0, . . . , i′r)

events for ball l. Specifically, we can write:

µ∗l (i0, . . . , ir) =

(
r−1

∑
j=0

µ∗l−1(i0, . . . , ij + 1, ij+1 − 1, . . . , ir)
ij + 1

T
)+

µ∗l−1(i0, . . . , ir−1, ir + 1)
ir + 1

T
+

µ∗l−1(i0, . . . , ir)
T −∑r

s=0 is

T

(where we define µ∗l−1(i0, . . . , ir) = 0 if ∑r
s=0 is > T, or is > T or is < 0 for

any s). Finally, to calculate the distribution of bins with r balls after l balls

are thrown, we simply sum all the events which have exactly k bins with r

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 62

balls:

Prob(µr(l) = k) = ∑
i0,...,ir−1,ir=k

µ∗l (i0, . . . , ir)

By the same notion, we also have, for r′ < r:

Prob(µr′(l) = k) = ∑
i0,...,ir′−1,ir′=k,ir′+1,...,ir

µ∗l (i0, . . . , ir)

The number of (i0, . . . , ir) combinations is exactly the number of combina-

tions of r + 2 non-negative numbers that add up to T, which is (T+r+1
r+1).

Thus the memory complexity is (T+r+1
r+1) (for fixed r, this is O(Tr)). Since

each event at iteration l involves a calculation based on (up to) r + 2 events

at iteration l− 1, the runtime complexity is l(r + 2)(T+r+1
r+1) (for fixed r and

l, this is O(Tr)). Specifically, for r = 1, we have memory complexity of
(T+2)(T+1)

2 and runtime complexity of 11
2(T + 2)(T + 1)l. Likewise, for

r = 0 (the occupancy problem), we have runtime complexity of 2(T + 1)l

and memory complexity of T + 1.

A.2 Analysis of Phase 1

Optimal size of new candidate batch

Note: For simplicity, herein we ignore the (rare) events wherein out-of-

order transmission cause an attacker 3-tuple y (which does not collide with

any of the attacker 3-tuples in S′i−1) to be accepted into S′i even though

other attacker 3-tuples in Si collide to its cell. In other words, we assume

that for y to be accepted into S′i, y’s cell must not collide with the cells of

both S′i−1 and Si \ {y}.

Suppose we already have n cells (out of T) already covered from previous

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 63

iterations, i.e. |S′i−1| = n. We want to test k = |Si| new external destina-

tions in the current iteration, and maximize the expected additional cells

we cover, namely new cells which contain exactly one new external desti-

nation. For this, we define the variable G(n, k) = |S′i \ S′i−1|. The question

is, therefore, which k maximizes E(G(n, k)) (the optimal k), and whether it

depends on n.

We first calculate the probability of a single cell to contribute to G(n, k),

i.e. for a cell to become filled with exactly one external destination (more

accurately – attacker 3-tuple, but we use it here interchangeably). For this,

the cell must be initially empty (w.r.t. external destinations), which has

the probability T−n
T . Now, since we have k new attacker destinations, The

probability of a particular cell to contain a single new attacker destination

is the binomial term, (k
1)(

1
T)

1(1− 1
T)

k−1. Therefore, the probability of an

arbitrary cell to contribute to G(n, k) is T−n
T (k

1)(
1
T)

1(1− 1
T)

k−1. We define a

variable Xi which is 1 if the cell i is not already covered, and has one new

attacker destination, and 0 otherwise, we have E(Xi) = T−n
T (k

1)(
1
T)

1(1−
1
T)

k−1. We now ask what is the expectancy of G(n, k) – the number of

cells containing a single external destination, out of all T cells. Clearly

E(G(n, k)) = E(∑i Xi). Since expectancy is additive regardless of depen-

dencies, i.e. it is E(G(n, k)) = T T−n
T (k

1)(
1
T)

1(1− 1
T)

k−1 = T−n
T k(1− 1

T)
k−1.

Indeed, this can be optimized over k without regard to n. The optimal k

is obtained when k(1− 1
T)

k−1 is minimal, i.e. d
dk k(1− 1

T)
k−1 = 0. This can

be easily solved: k = − 1
ln (1− 1

T)
. More precisely, since k should be integral,

We need to choose between kL = ⌊− 1
ln (1− 1

T)
⌋ and kH = ⌈− 1

ln (1− 1
T)
⌉ – the

one that provides the higher E(G(n, k)).

For high values of T, since ln (1− 1
T) ≈ −

1
T (and always ln (1− 1

T) < −
1
T)

we have kL = T − 1 and kH = T. In such a case, it is easy to see that

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 64

Algorithm A.1 Allocate Attacker Destinations

1: i← 0
2: procedure GETNEWEXTERNALDESTINATIONS
3: i← i + 1
4: return {IPSRV : (pI + (i − 1)(T − 1)), . . . , IPSRV : (pI + i(T − 1)−

1)}

E(G(n, T)) = E(G(n, T− 1)), therefore both k values yield the same result.

There is a slight advantage to using less packets, so we choose k = T − 1.

Therefore, our implementation of GETNEWEXTERNALDESTINATIONS can

be as depicted in A.1, wherein the destinations are different ports (starting

at port pI) on the same single attacker IP address.

Distribution Function for the Number of Iterations

We define the probability distribution for the number of covered cells at

the end of iteration l (l starts at 1), (|S′l|), to be pl. We think of pl as a vector

of T entries, where pl[i], 0 < i ≤ T is the probability that exactly i cells

are covered. We define P(k) = Prob(µ1(T − 1) = k) as the probability for

having exactly k bins with a single ball when throwing T − 1 balls into T

bins. Define S∗l ⊆ Sl to be destinations in Sl which do not fall into the same

cell with any other destination in Sl (i.e. they belong to a unique cell). If

we know that |S∗l | = k, and we know that |S′l| = j, then the probability for

|S′l+1| = i (where i ≥ j) is the probability that exactly i− j ≤ k balls (out of

k) from S∗l do not fall into S′l.

To calculate this, we first need to choose the subset of i− j balls that do not

fall into S′l. We have (k
i−j) ways to choose it. Then, the first ball in the subset

needs to fall into the T− j bins not covered by S′l, which has the probability
T−j

T . The second ball in the subset is known to fall into a different bin,

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 65

hence has a probability of T−j−1
T−1 to fall into a bin not covered by S′l, and

so forth. The total probability of the (i− j) -sized subset to fall outside S′l
(i.e. in S̄′l, which has |S̄′l| = T − j) is therefore (T−j)(T−j−1)···(T−j−(i−j−1))

T(T−1)···(T−(i−j−1)) .

Now, we also need the complementary subset of k − (i − j) balls to fall

into S′l. For this to happen, we clearly require the complementary subset

size to be no bigger than |S′l|, i.e. k − (i − j) ≤ j which incurs k ≤ i.

Under this assumption, the probability of the complementary subset to fall

into S′l is j(j−1)···(j−(k−(i−j)−1))
(T−j−(i−j))···(T−j−(i−j)−(k−(i−j)−1)) , and note that the first ball in

this subset starts with T − (i− j) possible bins (left from the first subset).

Thus, the overall probability pijk of the event is (after further algebraic

simplification):

pijk =

(
k

i− j

)
((T − j) · · · (T − i + 1)) · (j · · · (i− k + 1))

T · · · (T − k + 1)

Therefore, for l > 1, pl+1[i] = ∑
min(i,T−1)
j=1 pl[j]∑i

k=i−j P(k)pijk, and p1[i] =

P(i). Note that we deliberately do not sum the terms at j = T, since we

want these to “disappear” from the system after the iteration in which

they are created. In this way, ∑T
i=1 pl[i] represents the probability of the

process to survive l iterations, and is strictly monotonously decreasing,

with ∑T
i=1 p1[i] = 1 and ∑T

i=1 p∞[i] = 0. Also note that p′(l), the probability

of the process to terminate at iteration l is simply pl[T], i.e. if we define φ =

(0, . . . , 1) as the linear functional that extracts the last vector coordinate,

then p′(l) = φ · pl.

We see that pl+1 is a linear combination with fixed coefficients of pl,

therefore we can write pl+1 = A · pl, where A ∈ M(T, T) and Aij =

∑i
k=i−j P(k)pijk for j ≤ min(i, T − 1) and Aij = 0 elsewhere.

Thus, we have the distribution p′(l) for termination at iteration l:

p′(l) = φ(Al−1P)

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 66

5 10 15 20 25 30 3510−5

10−4

10−3

10−2

10−1

Iterations (l)

Pr
ob

ab
ili

ty

Theoretic Results
Empiric Results

Figure A.1: Distribution Function for Phase 1 Iterations (only values ≥ 10−5 are
shown)

From this we can calculate the distribution of l, and specifically E(l). The

distribution function for l is plotted in Fig. A.1. For T = 256, we calculated

E(l) = 13.819116.

We also simulated Phase 1 for T = 256 (with M = 1000000 experiments).

The average number of iterations needed was 13.81484, in line with the

theoretic result. We also plotted the empiric distribution function in A.1.

As can be seen, the empiric results fit the theoretic prediction very tightly.

A.3 Analysis of Phase 2

Denote by N the population size we want to support, in the sense that

we allow an average of up to ĉ device ID collisions in a population of N

devices. For simplicity, we assume that each device among the population

of N devices has a unique key (K2). Of course, when 2|K2| ≫ (N
2) this

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 67

assumption is statistically valid (birthday paradox), but the reader should

keep in mind that the K2 key space size is an upper bound on the device

ID space, namely the device ID space cannot exceed 2|K2| even if we obtain

the full list of collisions for the device at hand (note that the device ID

space can reach almost 2|K2| with enough samples).

In general, we can add loopback destinations until we get “enough” in-

dependent pairs. We can define a threshold probability p∗ which is the

maximal accepted probability for a random device to have the same de-

vice ID as the current device. We set p∗ = ĉ
(N

2)
to guarantee an average

collision count in the entire population of at most ĉ. For every new des-

tination, we update n, the total number of pairs, and check the following

condition (where l is the number of loopback destinations):

Pl
D(n) ≤ p∗

We stop at the first l that satisfies the above condition. (We show below

why ensuring this condition suffices to guarantee up to ĉ collisions.) The

device ID is then the n independent pairs (and l) and the runtime is l.

Note: In order for the device ID to be well defined, we need to define

a canonical selection of independent collisions. This can be done easily,

for example, we choose only pairs where one of the destinations is the

first one that was associated with the cell. Since the order of associating

destinations to cells is deterministic (it is a subset of the order in which the

destinations are enumerated), this canonical form is well defined.

Note that Pl
D(n) is monotonously decreasing in n and l, when n ≥ 0 and

1 ≤ l ≤ T. Also note that Pl
D(n) ≤

1
Tn . Therefore, if 1

Tn ≤ p∗, it follows

that Pl
D(n) ≤ p∗. From this we can calculate an upper bound for n, which

is nUB = ⌈− logT p∗⌉. It is important to stress that this is not a tight upper

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 68

bound. Still, it shows that n is typically very small, even for extremely

small p∗.

We want to calculate lmax and E(l). We assume l ≤ ⌊T−
√

T⌋+ 1 (we will

see below how this upper bound is obtained).

Calculating lmax. For lmax, the worst case is n = 0 (this is only so

when l ≤ T). This results in Pl
D(0) = ∏l−1

i=0(1 −
i
T). This expression is

monotonously decreasing for 1 ≤ l ≤ T. We can therefore find the mini-

mal lmax such that Plmax
D (0) ≤ p∗ using binary search. Note that if T is “too

small” (i.e. if T!
TT > p∗) then a solution may not be found, see A.4 for a

discussion on this topic.

Calculating E(l). We first define n∗l , which is the minimal n (given l) that

satisfies Pl
D(n) ≤ p∗. We can find it using binary search with 0 ≤ n ≤ l− 1.

It is easy to see that n∗l is monotonously decreasing in l (if Pl
D(n

∗
l) ≤ p∗ for

l, then Pl′
D(n

∗
l) ≤ Pl

D(n
∗
l) ≤ p∗ for l′ > l, therefore n∗l′ ≤ n∗l). Note that

n∗l might not be found for every l. This happens when Pl
D(n) > p∗ for

every n ∈ [0, l − 1]. In such a case, we define n∗l = ∞. Let lmin denote the

minimal l for which n∗l exists (finite).

With this definition, the termination condition for step l of the phase 2

algorithm becomes n ≥ n∗l (n includes step l’s potential collision). This

allows a simpler implementation of the algorithm, since it requires simply

keeping track of the number of independent collisions, and comparing

them to n∗l (which can be computed once, offline, per p∗). This leads to

the following observation: the algorithm is completely determined by the

vector (n∗l)
lmax
l=lmin

.1 In Table A.1 we provide n∗l for N = 1000000, ĉ = 1.

1Technically, the algorithm also depends on lmin and lmax but these can be easily de-
duced from the n∗l series: lmin = min{l|n∗l < ∞} and lmax = min{l|n∗l = 0}.

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 69

n∗l
6 ≤ l ≤ 52 5
53 ≤ l ≤ 72 4
73 ≤ l ≤ 87 3
88 ≤ l ≤ 98 2
99 ≤ l ≤ 108 1
l = 109 0

Table A.1: n∗l for N = 1000000, ĉ = 1

Consider now the probability of the process to terminate at step l. For this,

the process must arrive at step l − 1 but not terminate there. But since n is

monotonously increasing in l, and n∗l is monotonously decreasing in l, it

follows that if the condition for step l − 1 is not satisfied, i.e. nl−1 < n∗l−1

then for every 1 ≤ l′ < l, nl′ < n∗l′ . Therefore, failing the condition for step

l − 1 guarantees that the process also did not terminate anytime earlier.

Lemma A.3.1 If l ≤ ⌊T −
√

T⌋+ 1 and n + 1 ≤ l − 2 then Pl−1
D (n + 1) ≤

Pl
D(n).

Proof. Pl−1
D (n+1)
Pl

D(n)
= 1

T(1− l−n−2
T)(1− l−n−1

T)
≤ 1

T(1− ⌊T−
√

T⌋
T)(1− ⌊T−

√
T⌋

T)
≤ 1.

Corollary A.3.2 If lmax ≤ ⌊T−
√

T⌋+ 1, l ≤ lmax and n∗l−1 exists (finite) then

n∗l = n∗l−1 or n∗l = n∗l−1 − 1.

Proof. By the lemma, Pl−1
D (n∗l + 1) ≤ Pl

D(n
∗
l) ≤ p∗, therefore, n∗l−1 ≤ n∗l +

1. Since n∗ is monotonously decreasing, n∗l−1 = n∗l or n∗l−1 = n∗l + 1.

Corollary A.3.3 If lmin ≤ ⌊T −
√

T⌋+ 1 then n∗lmin
= lmin − 1.

Proof. By the definition of n, n∗lmin
≤ lmin− 1. We prove that n∗lmin

≥ lmin− 1

by contradiction. Suppose n∗lmin
< lmin − 1 i.e. n∗lmin

− 1 ≤ lmin − 3,

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 70

then Plmin−1
D (n∗lmin

+ 1) ≤ Plmin
D (n∗lmin

), and since Plmin
D (n∗lmin

) ≤ p∗ we have

Plmin−1
D (n∗lmin

+ 1) ≤ p∗. Thus we can find n∗lmin−1 ≤ n∗lmin
+ 1, in contradic-

tion to the minimality of lmin.

We will henceforth assume l ≤ ⌊T −
√

T⌋+ 1. Again, this does not hold

for “small” T values, i.e. when P⌊T−
√

T⌋+1
D (0) > p∗.

We will also need to calculate the probability of l loopback destinations to

have exactly n independent collisions. This is equivalent to asking, when

throwing l balls into T bins, what is the probability for having exactly

T − (l − n) empty bins. Consequently, we define:

pl(n) := Prob(µ0(l) = T + n− l)

We now calculate p′(l), the probability to terminate at step l, based on the

relationship between n∗l and n∗l−1. Specifically, p′(1) = 0 since P1
D(0) = 1

(for l = 1, we only have n = 0 and thus p1(0) = 1). Since there are only

three options for n∗l−1: undefined (when l = lmin), n∗l or n∗l + 1, we can

calculate p′(l) as follows:

• If l = lmin then n∗l = lmin − 1. Since in the previous round l′ =

lmin − 1 the maximum number of pairs is l′ − 1 = lmin − 2, then for

the algorithm to terminate, we must have nl′ = lmin− 2 pairs already,

and then a new pair is must be added. Therefore:

p′(lmin) = plmin−1(lmin − 2)
(lmin − 1)− (lmin − 2)

T
=

plmin−1(lmin − 2)
T

• If l > lmin and n∗l = n∗l−1 then in order to terminate at step l but not

at step l − 1, we need to have nl−1 = n∗l−1 − 1 (note that n∗l−1 > 0,

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 71

or else we would have stopped at l − 1, therefore nl−1 ≥ 0, this is

captured in the fact that pl−1(·) = 0 for negative arguments). We

also need a new collision so that nl = n∗l , whose probability is simply
(l−1)−(n∗l−1−1)

T . The probability in this branch is, therefore:

p′(l) = pl−1(n∗l−1 − 1)
(l − 1)− (n∗l−1 − 1)

T

• If l > lmin and n∗l = n∗l−1 − 1, then in order to terminate at step l but

not at step l − 1, we need to have either nl−1 = n∗l−1 − 1 or nl−1 =

n∗l−1 − 2 to fail the termination condition for step l − 1. If nl−1 =

n∗l−1 − 1 then it does not matter whether there is a collision or not at

step l, because the condition for step l is immediately met. This event

has probability pl−1(n∗l−1 − 1). If nl−1 = n∗l−1 − 2 (this is impossible

if n∗l−1 − 2 is negative, i.e. if n∗l−1 = 1, but this is captured in the

fact that pl−1(·) = 0 for negative arguments), then we also need a

new collision so that nl = n∗l = n∗l−1 − 1. This event has probability

pl−1(n∗l−1 − 2)
(l−1)−(n∗l−1−2)

T . The total combined probability is:

p′(l) = pl−1(n∗l−1 − 1)+

pl−1(n∗l−1 − 2)
(l − 1)− (n∗l−1 − 2)

T

Since PD is monotonously decreasing in n, the n that minimizes it is n =

l − 1, thus lmin is the minimal l such that Pl
D(l − 1) = 1

Tl−1 ≤ p∗. Therefore

lmin = ⌈1− logT p∗⌉. It is then guaranteed that p′(l) = 0 for l < lmin, i.e.

the algorithm will not terminate for l < lmin.

When n ≥ n∗l , the process terminates. Note that inequality can happen

when n∗l = n∗l−1 − 1 and nl−1 = n∗l−1 − 1. In such case, another collision

may be added in step l, ending with nl = n∗l−1 = n∗l + 1.

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 72

Note that for the above calculated lmax, n∗lmax
= 0, so this guarantees that

the algorithm will terminate at most after lmax steps.

Based on the above analysis, we can calculate E(l) = ∑lmax
l=2 p′(l) · l.

Average Collision Count. Of interest is also the average collision count

c across the entire population. If we extend the definition of p′ and de-

fine p′(l, n) to be probability to terminate at step l with n pairs, then the

probability of two random devices to have the same device ID is (by total

probability):

p̄ = ∑
l,n

p′(l, n)Pl
D(n)

Therefore:

c =
(

N
2

)
p̄

Since the phase 2 algorithm terminates when Pl
D(n) ≤ p∗, and we set p∗ =

ĉ
(N

2)
, an upper bound c ≤ ĉ on the number of device ID collisions in the

entire population is guaranteed.

It remains to calculate p′(l, n):

• If l = lmin then only n = l − 1 is possible (see above), and we have:

p′(lmin, lmin − 1) = p′(lmin)

• If l > lmin and n∗l = n∗l−1 then only n = n∗l is possible, and we have:

p′(l, n∗l) = p′(l)

• If l > lmin and n∗l = n∗l−1 − 1, then n can be either n∗l or n∗l + 1. The

case of n = n∗l + 1 can only happen when there were n∗l = n∗l−1 − 1

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 73

pairs in the (l − 1)-th round, and another pair was added in the l-th

round, i.e.:

p′(l, n∗l + 1) = pl−1(n∗l−1 − 1)
(l − 1)− (n∗l−1 − 1)

T

The case of n = n∗l can arise from two separate events: it is possible

to have n∗l = n∗l−1 − 1 pairs in the previous round, and add no new

pairs, or to have n∗l − 1 = n∗l−1 − 2 pairs in the previous round, and

add a new pair. Therefore:

p′(l, n∗l) = pl−1(n∗l−1 − 1)(1−
(l − 1)− (n∗l−1 − 1)

T
)+

pl−1(n∗l−1 − 2)
(l − 1)− (n∗l−1 − 2)

T

Simulation Results. We simulated the algorithm for population sizes

N = 10i, where i = 2, . . . , 12. For each population size, we ran 500 simu-

lations of an entire N devices population, i.e. we sampled 500N l values,

and 500 p̄ values. The results are summarized in Table A.2. As can be seen,

the simulation results closely match our analysis.

A.4 Notes About Low T Values

The above analysis assumes that T is “large enough”, i.e. that we will

always get enough information for some l ≤ T. We now explicitly cal-

culate the threshold T for this condition to hold. Let us denote l∗ =

⌊T −
√

T⌋ + 1. If Pl∗
D (0) > p∗ then we cannot assume the algorithm to

terminate with l∗ ≤ ⌊T −
√

T⌋+ 1. We have:

Pl∗
D (0) =

T · (T − 1) · · · (T − l∗ + 1)
Tl∗

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 74

N p∗ lmin lmax E(l) p̄/p∗ Sim. E(l) Sim. p̄/p∗

102 2.020× 10−4 3 64 30.027 0.16872 30.053 0.164
103 2.002× 10−6 4 78 35.151 0.37544 35.153 0.348
104 2.000× 10−8 5 90 39.261 0.35504 39.261 0.334
105 2.000× 10−10 6 100 44.899 0.19315 44.899 0.21
106 2.000× 10−12 6 109 49.496 0.24641 N/A N/A
107 2.000× 10−14 7 117 53.01 0.33046 N/A N/A
108 2.000× 10−16 8 124 56.6 0.2851 N/A N/A
109 2.000× 10−18 9 131 60.354 0.26165 N/A N/A
1010 2.000× 10−20 10 137 63.843 0.25072 N/A N/A
1011 2.000× 10−22 11 143 66.891 0.27247 N/A N/A
1012 2.000× 10−24 11 149 69.917 0.2659 N/A N/A

Table A.2: Phase 2 Analysis vs. Simulated Results

We use Stirling’s approximation to obtain:

T!
TT

(T − l∗)T−l∗

(T − l∗)!

(T
T − l∗

)T−l∗

≈

√
2πTe−T eT−l∗√

2π(T − l∗)

(T
T − l∗

)T−l∗

We can also approximate T − l∗ ≈
√

T:

Pl∗
D (0) ≈ 4

√
Te−l∗

√
T
√

T ≈ e−(T−
√

T− 1
2

√
T ln T− 1

4 ln T)

Therefore, for the analysis to be correct, we require that T − (1 +

1
2 ln T)

√
T − 1

4 ln T ≥ − ln p∗.

Since p∗ is typically set to e.g. 2
N2 , it follows that we typically need T− (1+

1
2 ln T)

√
T − 1

4 ln T ≥ 2 ln N − ln 2. We use N = 1012 as an upper bound

(over 100× the current world population); the requirement then translates

into T ≥ 86.

This does not mean low T systems cannot be attacked. Quite the contrary.

We simply do not confine ourselves to l ≤ ⌊T −
√

T⌋+ 1. This may com-

plicate the analysis in general, but we can still easily analyze the extreme

Appendix A. Analysis of the Runtime of Our Attack Against DHPS 75

case T = 2. In this case, a device measured provides exactly L− 1 bits of

information when L loopback addresses are used: each one of the L − 1

loopback addresses after the first either collides with the first or not, con-

tributing exactly one bit. Therefore, we have PL
D = 2−(L−1) and given p∗,

we need L = ⌈− log2 p∗⌉+ 1 iterations to satisfy the requirement. For ex-

ample, with N = 106, we have p∗ = 2.000× 10−12 and L = 40, which is in

fact considerably better than T = 256 (whose E(l) = 49.496).

B Another Use Case: Traffic Mea-

surement

It is possible to count how many outbound TCP connections are estab-

lished by a device in a time period using the above techniques. This is

useful for remote traffic and load analysis, e.g. to compare the popular-

ity of services. For example, it is possible to remotely measure the rate at

which outbound TCP connections are opened by a forward HTTP proxy.

This can be used to estimate how many concurrent clients the HTTP for-

ward proxy serves. And quoting [4]: “In the context of the web, [count-

ing] how many TCP connections a user’s computer is establishing over

time [...] allows a website to count exactly how many subresources a third

party website loaded. [...] Distinguishing between different users behind

a VPN based on distinct source port ranges, [...] Tracking users over time

across multiple networks, [...] Covert communication channels between

different browsers/browser profiles running on the same computer, [...

and] Tracking what applications are running on a computer based on the

pattern of how fast source ports are getting incremented”.

This attack builds on the phase 1 technique (4.2). To mount the attack, the

attacker needs to have client access to the forward proxy. For simplicity

76

Appendix B. Another Use Case: Traffic Measurement 77

we assume that the attacker is simply one of the proxy’s clients. The at-

tacker first runs the phase 1 logic with the client side being a standalone

script/software (not inside a browser) that runs on a machine that has

client access to the forward proxy, and establishes T attacker 3-tuples that

conform to the T perturbation table counters. This needs to be done only

once, and ideally when the target device is relatively idle.

Next, the attacker can poll the TCP source ports pi for each of these T at-

tacker 3-tuples at time t. The attacker then polls the TCP source ports p′i at

time t′ > t. Denote by ρ the total number of ephemeral ports in the system:

ρ = max ephemeral−min ephemeral+ 1, and suppose no counter advanced

more than ρ − 1 steps (keep in mind that the attacker’s first poll also in-

crements each counter by 1), then the total number of TCP connections

established by the device between t and t′ is:

T−1

∑
i=0

((p′i − pi − 1) mod ρ)

This measurement can be repeated as long as the device does not restart.

C Analysis of RFC 6056’s Algo-

rithm 5

RFC 6056’s Algorithm 5 increments a global counter by a random value

between 1 and N, where N is configurable. In order to avoid connection

id reuse, RFC 6056’s Algorithm 5 should ensure that the counter does not

wrap around in less than 2 ·MSL seconds, where MSL is the server TCP

stack parameter. The original TCP RFC 793 sets MSL = 120. The default

value for Windows servers (the registry value TcpTimedWaitDelay) is 60

seconds [21]. In Linux, MSL = 30 seconds (evident from the kernel con-

stant TCP TIMEWAIT LEN= 2 · MSL = 60 [19]). The average progress per

TCP port in RFC 6056’s Algorithm 5 is N+1
2 , therefore in order not to wrap

around before 2 ·MSL seconds have elapsed, the following condition is

necessary (but not sufficient):

2 ·MSL · N + 1
2
· r < R

Where R is the port range (for Linux/Android, R = 60999− 32768 + 1 =

28232), and r is the outbound TCP connection rate. The above upper

bound for N is not tight, because it assumes that each connection is short

lived, i.e. terminated very shortly after it is established. If a connec-

tion is long lived, then its TIME WAIT phase is achieved after even more

78

Appendix C. Analysis of RFC 6056’s Algorithm 5 79

ports are consumed, thus lowering the bound for N. In an anecdotal test

with a Linux laptop running Ubuntu 20.04.3 and Chrome 96.0.4664.110,

we opened several tabs for media-rich websites and got 737 TCP connec-

tion in a 64.5 seconds duration, thus we measured r = 11.4. For Linux

servers, this yields N ≤ 81, and for Windows servers, this yields N ≤ 19.

As we said above, this is a very loose upper bound for N. And it is quite

possible that r higher than 11.4 is common in some scenarios. But even

setting N = 81 yields low security since it reduces the entropy of the TCP

source port by 8.5 bits (in the Linux server case), from log2 28232 = 14.8 to

log2 81 = 6.3 (10.6 entropy bit reduction, to 4.2 bits in the Windows case).

This seems unacceptable security-wise, and so Algorithm 5 fails to deliver

a practical trade-off between security and functionality.

Interestingly, RFC 6056 suggests N = 500 without explanation how this

value is obtained.

Part II

Publications

80

D Groove: Flexible Metadata

Private Messaging

Publication Data

Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zel-

dovich. 2022. Groove: Flexible Metadata-Private Messaging. In 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 22),

USENIX Association, Carlsbad, CA.

Abstract

Metadata-private messaging designs that scale to support millions of users

are rigid: they limit users to a single device that is online all the time and

transmits on short regular intervals, and require users to choose precisely

when each of their buddies can message them. These requirements induce

high network and energy costs for the clients, restricting users to commu-

nicate via one powerful device, like their desktop.

Groove is the first scalable metadata-private messaging system that gives

81

Appendix D. Groove: Flexible Metadata Private Messaging 82

users flexibility: it supports users with multiple devices, allows them to

message buddies at any time, even when those buddies are offline, and

conserves the user’s device bandwidth and energy. Groove offers flexi-

bility by introducing oblivious delegation, where users designate an un-

trusted service provider to participate in rigid mechanisms of metadata-

private communication. It provides differential privacy guarantees on par

with rigid systems like Stadium and Karaoke.

An evaluation of a Groove prototype on AWS with 100 servers, dis-

tributed across four data centers on two continents, demonstrates that it

can achieve 32s of latency for 1 million users with 50 buddies in their con-

tact lists. Experiments with a client running on a Pixel 4 smartphone show

that it uses about 100 MB/month of bandwidth and increases battery con-

sumption by 50mW (+16%) compared to an idle smartphone. These mea-

surements show that Groove makes it realistic to hide messaging metadata

on a mobile device.

E Device Tracking via Linux’s

New TCP Source Port Selec-

tion Algorithm

Publication Data

Moshe Kol, Amit Klein, and Yossi Gilad. 2023. Device Tracking via Linux’s

New TCP Source Port Selection Algorithm. In 32nd USENIX Security Sym-

posium (USENIX Security 23), USENIX Association, Anaheim, CA.

Abstract

We describe a tracking technique for Linux devices, exploiting a new TCP

source port generation mechanism recently introduced to the Linux ker-

nel. This mechanism is based on an algorithm, standardized in RFC 6056,

for boosting security by better randomizing port selection. Our technique

detects collisions in a hash function used in the said algorithm, based on

sampling TCP source ports generated in an attacker-prescribed manner.

These hash collisions depend solely on a per-device key, and thus the set of

83

Appendix E. Device Tracking via Linux’s New TCP Source Port Selection
Algorithm 84

collisions forms a powerful device ID that allows tracking devices across

browsers, browser privacy modes, containers, and IPv4/IPv6 networks

(including some VPNs). It can distinguish among devices with identical

hardware and software, and lasts until the device restarts.

We implemented the tracking technique and then tested it using track-

ing servers in two different locations and with Linux devices on various

networks. We also tested our technique on an Android device that we

patched to introduce the new port selection algorithm (the Linux kernel

with the new algorithm should roll out to Android devices in the near fu-

ture). The tracking technique works in real-life conditions, and we report

detailed findings about it, including its dwell time, scalability, and success

rate in different network types. We worked with the Linux kernel team to

mitigate the exploit, resulting in a security patch introduced in May 2022

to the Linux kernel, and provide recommendations for better securing the

port selection algorithm in the paper.

