
Racing Against the Lock: Exploiting
Spinlock UAF in the Android Kernel

Moshe Kol
OffensiveCon 23

1

spin_lock(&obj->lock);
// Nothing touches obj here.
spin_unlock(&obj->lock);

You’ve found a use-after-free on obj:

2

spin_lock(&obj->lock);
// Nothing touches obj here.
spin_unlock(&obj->lock);

Can it be exploited?
Reliably? Generically?

You’ve found a use-after-free on obj:

3

About Me

● Moshe Kol (@0xkol), Security Researcher at Paragon;
Former Security Researcher at JSOF

● Started with embedded security;

Now focusing on the Android kernel

● M.Sc. in Computer Science from the Hebrew University

4

https://twitter.com/0xkol

1. CVE-2022-20421 (“Bad Spin”)

2. The Exploitation Technique

3. Demo Video

5

CVE-2022-20421 (“Bad Spin”)

● Race condition in Binder leading to UAF on binder_proc

● Reachable from untrusted_app SELinux context

● Closed on Android’s Security Bulletin of October 2022

6

Binder

● IPC for applications and services on Android

● Advantageous in terms of security & performance

● Binder device (/dev/binder or /dev/hwbinder) is
accessible by all applications

7

Binder Transactions

● In Binder, processes exchange transactions

● Transactions contain raw data and objects

● Kernel driver translates each object

8

Binder Handles

● Allowing a process to share a handle with a peer

9

Binder Handles

● Allowing a process to share a handle with a peer

10

Binder Handles

● Allowing a process to share a handle with a peer

11

Translating Handles

Carried out in two steps:

1. Create a new Binder reference in the

target process (if not already exists)

12

Translating Handles

Carried out in two steps:

1. Create a new Binder reference in the

target process (if not already exists)

2. Taking a refcount on its Binder node

13

Translating Handles

Carried out in two steps:

1. Create a new Binder reference in the

target process (if not already exists)

2. Taking a refcount on its Binder node

Bug: If the 2nd step fails, the new reference
is not cleaned-up

14

Translating Handles

Carried out in two steps:

1. Create a new Binder reference in the

target process (if not already exists)

2. Taking a refcount on its Binder node

Bug: If the 2nd step fails, the new reference
is not cleaned-up

Normally, not a security issue – reference

will be cleaned up in process exit
15

The Race
/* B */

exit(0)

> binder_deferred_release()

==> Cleanup all references

/* A */

int binder_transaction(...) {

Allocate buffer in target process

Copy transaction data

Translate each object

Schedule transaction

} 16

The UAF

0. Setup: A has reference to C

17

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

18

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

19

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

20

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B
3.1. New reference contains a pointer to the

owning process (B), which is now freed

21

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime

22

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime
4.1. Releases all nodes

23

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime
4.1. Releases all nodes

4.2. Iterates over all references

24

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime
4.1. Releases all nodes

4.2. Iterates over all references

4.3. UAF on B’s binder_proc

25

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime
4.1. Releases all nodes

4.2. Iterates over all references

4.3. UAF on B’s binder_proc

Unreachable!

26

The UAF

0. Setup: A has reference to C

1. A shares this reference with B

2. B exit() in the middle

3. New reference to C is inserted to B

4. C exit(), anytime
4.1. Releases all nodes

4.2. Iterates over all references

4.3. UAF on B’s binder_proc

4.4. inner_lock is a spinlock

27

“Bad Spin” Summary

● Race condition that leads to UAF on binder_proc
○ We win it 100%

● binder_proc is allocated in kmalloc-1k
○ Relatively quiet

● We control the timing of the UAF
○ Since we control process C

28

UAF Bug
spin_lock()
spin_unlock()

Kernel R/W
 + kASLR bypass

UAF Bug
spin_lock()
spin_unlock()

Kernel R/W
 + kASLR bypass

+ Generic
+ Reliable

Challenges

● Seems like a weak primitive: flipping a bit from 0 to 1 for a short moment

● Spinlocks disable kernel preemption, so winning the race is more difficult

● inner_lock offset varies between devices:
○ 544 (Samsung S21 Ultra)
○ 576 (Samsung S22 and Google Pixel 6)
○ 584 (Google Pixel 6, Android 13)

31

Our (Major) Assumptions

● Queued spinlock implementation (default since kernel 4.19)

● Lock offset divisible by 8

● GFP_KERNEL & GFP_KERNEL_ACCOUNT served from the same cache
○ By design on 5.10 kernels
○ For older kernels, true if kernel is booted with cgroup.memory=nokmem

32

Extracting Primitives

33

Extracting Primitives

Free binder_proc and
reallocate as “obj”

34

Extracting Primitives

Trigger UAF:
spin_lock(&proc->inner_lock)
spin_unlock(&proc->inner_lock)

35

Extracting Primitives

obj->xxx changes in
some interesting way

36

How Spinlocks are Implemented?

● More complex than you might think….

● “Queued Spinlock”: Designed to avoid
starvation and improve cache utilization

● The lock maintains a queue, each CPU
spins on its own accessible value

37

How Spinlocks are Implemented?

● More complex than you might think….

● “Queued Spinlock”: Designed to avoid
starvation and improve cache utilization

● The lock maintains a queue, each CPU
spins on its own accessible value

38

Implementation Details

● Spinlocks are 4-byte wide, broken as (tail, pending, locked)

tail (2 bytes) pending (1 byte) locked (1 byte)

● (0, 0, 0) means lock is released (ready to be acquired)

● locked != 0 means other thread holds the lock

39

LSBMSB

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000000

foo.c

CPU 0 CPU 1

40

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000001

foo.c

CPU 0 CPU 1

spin_lock(&f->lock)

.. critical section ..

41

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000001

foo.c

CPU 0 CPU 1

spin_lock(&f->lock)

.. critical section .. spin_lock(&f->lock)

42

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000101

foo.c

CPU 0 CPU 1

spin_lock(&f->lock)

.. critical section .. spin_lock(&f->lock)

43

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000100

foo.c

CPU 0 CPU 1

spin_lock(&f->lock)

.. critical section .. spin_lock(&f->lock)

spin_unlock(&f->lock)

44

Implementation Details
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

void foo(struct foo *f){

spin_lock(&f->lock);

... critical section ...

spin_unlock(&f->lock);

}

f->lock: 0x00000001

foo.c

CPU 0 CPU 1

spin_lock(&f->lock)

.. critical section .. spin_lock(&f->lock)

spin_unlock(&f->lock) .. critical section ..

45

Key Observations
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

46

1. Spinning only on the locked byte

Key Observations
void spin_lock(struct qspinlock *lock) {

if (*(u32 *)lock == 0) {
lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

47

1. Spinning only on the locked byte

2. After spinning, only pending and

locked change (tail do not)

Key Observations

1. Spinning only on the locked byte

2. After spinning, only pending and

locked change (tail do not)

3. We want to avoid entering queue

void spin_lock(struct qspinlock *lock) {
if (*(u32 *)lock == 0) {

lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0)
goto queue;

lock->pending = 1;
while (lock->locked != 0);
lock->pending = 0;
lock->locked = 1;
return;

queue: ...
}

void spin_unlock(struct qspinlock *lock) {
lock->locked = 0;

}

48

Extracting Primitives

obj->xxx changes in
some interesting way

49

Semi-inc primitive

1. Reallocate binder_proc as obj.

2. Set obj->xxx to a value between 1 and 0xff.

50

Semi-inc primitive

1. Reallocate binder_proc as obj.

2. Set obj->xxx to a value between 1 and 0xff.

3. Trigger UAF. The lock will spin.

⇒ pending = 1.

Outcome: obj->xxx increased by 0x100.

51

Can be useful if obj->xxx represents length or flags.

We didn’t find a good instantiation of this primitive.

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

52

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

2. Increment obj->xxx to a value between 1 and 0xff.

53

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

2. Increment obj->xxx to a value between 1 and 0xff.

3. Trigger UAF. The lock will spin.

54

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

2. Increment obj->xxx to a value between 1 and 0xff.

3. Trigger UAF. The lock will spin.

4. Increment obj->xxx to 0x200.

55

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

2. Increment obj->xxx to a value between 1 and 0xff.

3. Trigger UAF. The lock will spin.

4. Increment obj->xxx to 0x200.

⇒ The lock stops spinning.

⇒ pending = 0, locked = 1 (for a brief moment).

56

Semi-dec primitive
Assumption: obj->xxx represents a refcount.

1. Reallocate binder_proc as obj.

2. Increment obj->xxx to a value between 1 and 0xff.

3. Trigger UAF. The lock will spin.

4. Increment obj->xxx to 0x200.

⇒ The lock stops spinning.

⇒ pending = 0, locked = 1 (for a brief moment).

⇒ spin_unlock() sets locked to 0.

Outcome: obj has 0x100 references, but refcount shows 0.
57

Semi-dec primitive

58

Idea: Do another inc() + dec() to free “obj”.

✘ Finding an object with a refcount at a specific offset
✗ Offset changes between devices so not universal exploit

✗ Reduce stability if the object is not in kmalloc-1k (cross-cache)

✘ Increment a 0 refcount is considered bad
✗ CONFIG_REFCOUNT_FULL converts every refcount_inc() to

refcount_inc_not_zero()

What about pointer corruption?

59

What about pointer corruption?

1. Reallocate binder_proc as obj

2. Set obj->pointer to some kernel pointer

3. Trigger UAF

60

What about pointer corruption?

1. Reallocate binder_proc as obj

2. Set obj->pointer to some kernel pointer

3. Trigger UAF

Problem: If (tail, pending) are non-zero on
spin_lock() we go to queue (... and crash).

We need tail == 0, pending == 0 and locked != 0.

61

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

62

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

63

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

4. Free obj1 from other CPU (lock still spinning)

64

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

4. Free obj1 from other CPU (lock still spinning)

5. Reallocate as obj2

65

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

4. Free obj1 from other CPU (lock still spinning)

5. Reallocate as obj2

6. Assuming obj2->pointer ends with 0, lock will stop

spinning and zero out the 2nd LSB

66

Pointer Corruption: 2nd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

4. Free obj1 from other CPU (lock still spinning)

5. Reallocate as obj2

6. Assuming obj2->pointer ends with 0, lock will stop

spinning and zero out the 2nd LSB

Allocation is initialized to 0 because of init_on_alloc
⇒ We might release the lock too early

67

Pointer Corruption: 3rd Attempt

1. Reallocate binder_proc as obj1

2. Set obj1->xxx to 0x41

3. Trigger UAF from CPU 0

4. Free obj1 from other CPU (lock still spinning)

5. Reallocate as obj2 and slow down CPU 0 using

interrupts* to win a tiny race

6. Assuming obj2->pointer ends with 0, lock will stop

spinning and zero out the 2nd LSB

* Technique adapted from Jann Horn’s “Racing against the clock - hitting a tiny kernel race window”68

UAF Bug
spin_lock()
spin_unlock()

Pointer
Corruption

Primitive

Kernel R/W
 + kASLR bypass

Nullifying 2 LSBs

Finding good objects

70

● obj1[offset]: 4-byte value with LSB != 0

● obj2[offset]: low-half of a kernel pointer with LSB == 0

● “offset” might change between devices

obj1 is a TTY Write Buffer

● TTY write buffer can be allocated from kmalloc-1k

● Contains arbitrary data that we control from userspace

tty_fd = open(“/dev/ptmx”, O_RDWR);

write(tty_fd, buffer, 1024);

71

obj2 is an fd table

● Array of struct file pointers

● Solves the inner_lock offset
fragmentation issue: will work
on any offset that is aligned to 8

● We can access target_fd
through system calls

72

obj2 is an fd table

● Allocated on kmalloc-1k if max file descriptor
number is in [64, 128)

● Two ways to allocate it:
1. By forking a process with max file

descriptor in [64, 128)
2. By calling dup2(fd, new_fd) from a

process whose max file descriptor < 64
and new_fd is in [64, 128)

73

obj2 is an fd table

We used dup2() technique:

✓ Has less side effects compared to fork()

✓ We encountered mostly offsets >= 520

(meaning target_fd >= 65)

74

Pointer Corruption: Ensuring LSB == 0

● struct file pointers do not necessarily end with 0
○ Depends on the size of the struct (our case: 0x140)

● If we catch a pointer with LSB != 0, the lock keep spinning

● Solution: Repeatedly invoke dup2(fd, target_fd) with
random fd

○ Probability of LSB == 0 is 7/25 so trying 16 fds succeeds with >99%

ffffff80c7cd 8000
ffffff80c7cd 8140
ffffff80c7cd 8280
ffffff80c7cd 83c0
ffffff80c7cd 8500
ffffff80c7cd 8640
ffffff80c7cd 8780
ffffff80c7cd 88c0
ffffff80c7cd 8a00
ffffff80c7cd 8b40
ffffff80c7cd 8c80
ffffff80c7cd 8dc0
…
ffffff80c7cd 9e00

Typical filp slab addresses:

75

The Primitive

● We can zero-out the 2 LSBs of a struct file pointer

● The corrupted struct file is accessible via specific fd number

ffffff801462dd00

ffffff8014620000

struct file *

Vulnerability

76

file Pointer
Corruption

UAF Bug
spin_lock()
spin_unlock()

Pointer
Corruption

Primitive

Kernel R/W
 + kASLR bypass

Nullifying 2 LSBs

The filp cache

● struct file is allocated from a dedicated pool called “filp”

● Each slab consists of 2 pages
○ ~25 objects per slab

● Slab start address is aligned to 2 pages

78

The filp cache

● The corrupted struct file could point outside of its slab
○ Happens when the slab start address is not aligned to 16 pages

79

The filp cache

● The corrupted struct file could point outside of its slab
○ Happens when the slab start address is not aligned to 16 pages

● Our goal: land on an object under our control
○ The object will contain a “fake” struct file

80

We want to fake struct file

● Our choice: TTY write buffer as our target object

● Allocated from kmalloc-1k (8 pages per slab)

81

Shape physical memory

1. Warm-up: Spray objects in kmalloc-1k and struct

files to fill-up holes.

2. Allocate 32 objects from kmalloc-1k.

3. Allocate 25*4 struct files.

4. Repeat steps 2 and 3.

Desired situation after shaping:

82

Shape physical memory

1. Warm-up: Spray objects in kmalloc-1k and struct

files to fill-up holes.

2. Allocate 32 objects from kmalloc-1k.

3. Allocate 25*4 struct files.

4. Repeat steps 2 and 3.

Desired situation after shaping:

We use file descriptors from
these filp caches for dup2()

83

Possible situations after shaping (1/3)
1

84

Possible situations after shaping (2/3)

85

2

1

Possible situations after shaping (3/3)

86

2

1

3

Find out whether we succeeded

● We have access to the corrupted fd

● Idea: Extract bits from the corrupted file
⇒ see if match what we expect

● Careful not to dereference any pointer –
otherwise we might crash in the
“unknown” case

87

Shaping

Vulnerability

Move on…

Yes

No

Success?

file Pointer
Corruption

“Fake”
file

UAF Bug
spin_lock()
spin_unlock()

Pointer
Corruption

Primitive

Kernel R/W
 + kASLR bypass

Nullifying 2 LSBs

What to do with a fake struct file?

● Call close() on the corrupted fd

● If certain conditions are met, the memory location will be freed

● We get UAF on TTY write buffer (much stronger)

89

Closing file descriptors

Ensures filp->count > 0

Unless FMODE_PATH bit is set,
inform any dnotify watchers

Invoke flush operation if exists

Decrement filp->count
(free it if reaches 0)

90

Closing file descriptors

Set filp->count = 1

Set the FMODE_PATH bit

91

Closing file descriptors
We need to set filp->f_op
to a valid kernel address
that points to NULL.

kASLR is not yet bypassed,
so we need fixed address.

We found such address in
the vmemmap region of the
kernel.

92

Closing file descriptors

● After we all necessary checks are bypassed, fput(filp) is called

● Internally, it’s the function file_free_rcu() that frees the file

Frees the memory location
back to the slab allocator

93

Closing file descriptors

● After we all necessary checks are bypassed, fput(filp) is called

● Internally, it’s the function file_free_rcu() that frees the file

Frees the memory location
back to the slab allocator

94

To which cache the TTY object returns?
filp_cache or kmalloc-1k?

Aside: kmem_cache_free()

The cache is determined from the
virtual address, not argument.

Mismatch leads to a warning, not
crash.

95

file Pointer
Corruption

“Fake”
file

UAF on TTY
Write Buffer

UAF Bug
spin_lock()
spin_unlock()

Pointer
Corruption

Primitive

Kernel R/W
 + kASLR bypass

Nullifying 2 LSBs

Exploiting the TTY write buffer UAF

● We catch the TTY write buffer with an array of pipe_buffers

TTY write buffer (1K)

tty_fd
bufs
[0]

bufs
[1]

bufs
[2]

bufs
[3]

bufs
[4]

bufs
[5]

bufs
[6]

bufs
[7]

bufs
[8]

bufs
[9]

bufs
[10]

bufs
[11]

bufs
[12]

bufs
[13]

bufs
[14]

bufs
[15]

pipe->bufs[]

The physical page
storing the pipe data

Pointer to global kernel
data structure

97

Leaking Pipe Buffer

● Simply reading from TTY file descriptor won’t work

● The TTY driver copies data from input buffer to output buffer

● We read from the output buffer

98

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

99

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

2. Suspend the PTY with tcflow(fd, TCOOFF)

100

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

2. Suspend the PTY with tcflow(fd, TCOOFF)

3. Write 0 on the TTY write buffer

3.1. Thread waits before the copy to the output buffer

101

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

2. Suspend the PTY with tcflow(fd, TCOOFF)

3. Write 0 on the TTY write buffer

4. Write data to the pipe (populates a pipe buffer)

102

00 de 0e 25 ff ff ff ff
00 00 00 00 00 10 00 00
a8 21 16 1e ed ff ff ff
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

2. Suspend the PTY with tcflow(fd, TCOOFF)

3. Write 0 on the TTY write buffer

4. Write data to the pipe (populates a pipe buffer)

5. Resume the PTY with tcflow(fd, TCOON)

103

00 de 0e 25 ff ff ff ff
00 00 00 00 00 10 00 00
a8 21 16 1e ed ff ff ff
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Copy

00 de 0e 25 ff ff ff ff
00 00 00 00 00 10 00 00
a8 21 16 1e ed ff ff ff
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

Leaking Pipe Buffer

1. Allocate array of pipe buffers (initialized to 0)

2. Suspend the PTY with tcflow(fd, TCOOFF)

3. Write 0 on the TTY write buffer

4. Write data to the pipe (populates a pipe buffer)

5. Resume the PTY with tcflow(fd, TCOON)

6. Read from the TTY file descriptor

104

00 de 0e 25 ff ff ff ff
00 00 00 00 00 10 00 00
a8 21 16 1e ed ff ff ff
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

pipe->bufs[]

TTY write buffer

Copy

00 de 0e 25 ff ff ff ff
00 00 00 00 00 10 00 00
a8 21 16 1e ed ff ff ff
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 …

Read from
this buffer →

Leaking Pipe Buffer

● Pipe buffer leaked!

● From leaked ops pointer we get
kernel image base address

● Defeats kASLR

105

Arbitrary R/W to the Linear Mapping
● By writing to the TTY file descriptor, we can

fake pipe buffer

● Gives us arbitrary R/W to the linear mapping:

1. Kernel virtual address in the linear

mapping ⇒ struct page address

2. Fake pipe buffer (esp. the page pointer)

3. R/W from the pipe file descriptors

106

Fake

Arbitrary R/W

● Use the linear mapping R/W to find our task struct

● Override addr_limit to gain full R/W capabilities

● With a UAO (User Access Override) bypass

107

file Pointer
Corruption

“Fake”
file

UAF on TTY
Write Buffer

UAF Bug
spin_lock()
spin_unlock()

Pointer
Corruption

Primitive

Kernel R/W
 + kASLR bypass

Nullifying 2 LSBs

Escalate to root

● Disable/bypass SELinux
○ Depending on device: override enforcing, write on AVC cache, …

● Run code as root
○ Switch creds to those of init, inject code to a root process (e.g. init), …

109

Tested devices

● Samsung Galaxy S22, Android 12, kernel 5.10.81

● Google Pixel 6, Android 12 + 13, kernel 5.10.[66|107]

● Samsung Galaxy S21 Ultra, Android 12, kernel 5.4.129

Our PoC success rate: ~70-80%, varies between devices & background activity

110

Pixel 6 Demo Video

111

Conclusion

● Wide range of devices are affected by the vulnerability

● A sufficiently motivated attacker can bypass all existing mitigations
○ And run arbitrary code as the root user

● Strong mitigations require stronger vulnerabilities (which are hard to find..)

112

Conclusion

● Wide range of devices are affected by the vulnerability

● A sufficiently motivated attacker can bypass all existing mitigations
○ And run arbitrary code as the root user

● Strong mitigations require stronger vulnerabilities (which are hard to find..)

Thank You!
www.jsof-tech.com@JSOF18

@0xkol
113

github.com/0xkol/badspin

http://www.jsof-tech.com
https://github.com/0xkol/badspin

