
Racing Against the Lock: Exploiting Spinlock UAF in the Android
Kernel
Moshe Kol

The JSOF Research Lab

Abstract

This paper presents an exploit for a unique Binder kernel
use-after-free (UAF) vulnerability which was disclosed
recently (CVE-2022-20421). Through this vulnerability,
we examine the exploitability of a spinlock use-after-free,
containing no other memory corruption primitive. We
devised an innovative and generic technique for exploit-
ing such limited use-after-free vulnerabilities, assuming
a queued spinlock implementation (the default imple-
mentation on Android since kernel version 4.19).
Our technique includes constructing a primitive to

corrupt a kernel pointer. This corruption is then fur-
ther developed into a type confusion and eventually, ar-
bitrary kernel read/write, including kASLR bypass and
all other relevant mitigations. We successfully demon-
strated a robust and stable exploitation on 3 Android de-
vices (Samsung Galaxy S21 Ultra, Samsung Galaxy S22,
and Google Pixel 6), assuming code execution from the
untrusted_app SELinux context.

1 Introduction

Nowadays, modern Android smartphones are shipped
with the strongest kernel mitigations and security mea-
sures. These measures reduce the likelihood of a success-
ful and reliable local privilege escalation (LPE) exploit in-
volving a kernel vulnerability. To cope with that, attack-
ers typically chain multiple vulnerabilities or rely on a
strong one. Specifically, kernel use-after-free (UAF) bugs
continue to be one of the most exploited bugs in modern
Linux/Android systems, despite the wide range of secu-
rity mitigations deployed on such systems.
Typically, a use-after-free bug contains an explicit

memory corruption primitive that is then used to con-
struct a full local privilege escalation (LPE) exploit. De-
pending on the vulnerability, the attacker, who wishes
to utilize the memory corruption primitive, has to by-
pass any code flows that access the reused memory in
ways that hinder successful exploitation. For instance,
attackers usually bypass kernel synchronization primi-
tives, such as spinlocks or mutexes, since they have the

potential to detain execution of the intended code flow
(best case) or crash the kernel in the worst case.

A primary example can be seen in the exploit
for the Bad Binder (CVE-2019-2215) vulnerability [7].
There, the exploit ensures iovec[10].iov_base is
set to a value that appears as an unlocked spin-
lock. The spinlock is bypassed to reach the inter-
esting function __remove_wait_queue(), that is used
further in the exploit. Another example is the ex-
ploit for xt_qtaguid vulnerability (CVE-2021-0399) [4].
The exploit ensures that eventfd_ctx.spinlock and
seq_file.mutex.spinlock overlap to prevent crash-
ing the kernel and utilize the eventfd object for subse-
quent exploit operations.

In this work, we consider the exploitability of a spin-
lock use-after-free, containing no other memory corrup-
tion primitive. We encountered this unusual situation
while developing an exploit for a Binder kernel use-after-
free vulnerability which was disclosed recently (CVE-
2022-20421). During development, we constructed an
innovative and generic technique for exploiting such
limited use-after-free vulnerabilities, assuming a queued
spinlock implementation (Android’s default implementa-
tion since kernel 4.19).

Specifically, we constructed a primitive that can zero-
out the 2 least significant bytes of a kernel pointer, which
we develop in to a type confusion. We then exploit this
type confusion to bypass kASLR and all other relevant
mitigations and gain arbitrary kernel read/write capa-
bilities. Using our technique, we successfully exploited
the Binder vulnerability on 3 Android devices (Samsung
Galaxy S21 Ultra, Samsung Galaxy S22 and Google Pixel
6), assuming code execution from the untrusted_app
SELinux context. Our exploit succeeds 4 out of 5 times,
depending on the device and any background activity.

Our contributions in this paper are:

1. Full description of our new spinlock UAF exploita-
tion technique.

2. Root cause analysis of the Binder vulnerability, in-
cluding techniques to widen the race window.

1

3. Source code1 of an exploit that uses our technique
and obtains arbitrary R/W primitives on 3 An-
droid devices (Samsung Galaxy S21 Ultra, Samsung
Galaxy S22 and Google Pixel 6) when running from
untrusted_app SELinux context.

2 Background

2.1 Binder Overview

Processes in the Android operating system use the Binder
framework for inter-process communication (IPC). At the
heart of the Binder framework lies the Binder kernel-
mode driver, which facilitates message passing from one
process to another. Processes interact with the driver
by opening the /dev/binder device (or /dev/hwbinder, de-
pending on the context) and issuing commands to it using
the ioctl() system call.
Binder is a central piece in the Android operating sys-

tem, both in terms of security and performance. From the
security perspective, it ensures (with the help of the ker-
nel driver) that the identity of the source process (UID,
PID) is securely conveyed to the destination. The des-
tination process can then use this identity for permis-
sion checking at the platform level. Performance-wise,
Binder supports multi-threading, lazymemory allocation
and scatter-gather features.
In binder, the messages transmitted between processes

are called transactions. For a process to receive transac-
tions, it must designate some portion of its address space
for their storage, up to 4MB (this is done via the mmap()
system call on the binder device). This virtual memory
area is managed by the kernel driver and is marked read-
only.
When a new transaction is issued, the kernel driver

allocates space within the destination process’ memory
area and copies the transaction data to it. The driver then
selects a thread in the destination process to receive the
transaction (these threads are called loopers in binder par-
lance) and inserts the transaction to the selected thread’s
work queue. The selected thread then reads the trans-
action and lets user-space handle it. When user-space is
done with the transaction, it issues an ioctl() to free-
up the space allocated for the transaction, allowing future
transactions to re-use it.
The Binder device (either /dev/binder or /dev/hw-

binder) is accessible by all applications running under the
untrusted_app SELinux domain. Hence, it is a very at-
tractive attack surface for privilege escalation. Our focus
is on the kernel-mode driver, not the user-mode compo-
nents of the framework. Familiarity with Linux kernel
concepts is assumed.

1https://github.com/0xkol/badspin

2.2 Binder Device Lifecycle

Open. When a process wants to talk using Binder, it
needs to open the Binder device:

binder_fd = open("/dev/binder", O_RDONLY);

Under the hood, in the kernel, the function
binder_open() is invoked. This function begins
with allocating (with kzalloc()) a structure called
binder_proc. After initializing it, the structure is
linked with the open file descriptor using the file’s
private_data field.
The binder_proc structure contains the following

fields (among others):

threads: A red-black tree of binder_thread objects
belonging to the process.

nodes: A red-black tree of binder_node objects be-
longing to the process.

refs_by_desc, refs_by_node: Red-black trees
storing binder_ref objects, sorted by different
keys.

tmp_ref: Refcount. When it reaches 0, the structure
is freed.

inner_lock, outer_lock: Spinlocks, for thread-
safety.

Close. When the user-mode done with Binder’s ser-
vice, it closes its binder file descriptor:

close(binder_fd);

In the kernel, the function binder_release() is
invoked. binder_release() does not immediately
cleans-up the binder_proc structure. Instead, it uses
a deferred work mechanism for that. The actual clean-
up code is in binder_deferred_release(proc). This
function:

1. Removes proc from the system-wide list of
binder_procs.

2. Increments proc’s refcount and sets its is_dead
flag to true.

3. Releases all binder_threads asso-
ciated with proc. Done by calling
binder_thread_release(proc, thread)
on each thread.

4. Releases all binder_nodes owned by the process.
Done by calling binder_node_release(node) on
each node.

5. Releases all binder_refs owned
by the process. Done by calling

2

https://github.com/0xkol/badspin

binder_cleanup_ref_olocked(ref) and
binder_free_ref(ref) on each reference.

6. Releases all work items:

binder_release_work(proc, &proc->todo);
binder_release_work(proc,

&proc->delivered_death);

7. Finally, decrement the proc’s refcount and free it
if it reaches 0. This is done by calling the function
binder_proc_dec_tmpref(proc).

2.3 Binder Transactions

Recall that the messages exchanged by Binder are called
transactions. Transactions can optionally contain ob-
jects, alongside raw data. Binder supports 7 types of ob-
jects, identified by the constants BINDER_TYPE_* (see in-
clude/uapi/linux/android/binder.h).

There are objects to support the submission of file-
descriptors between processes (FD, FDA), an object to sup-
port scatter-gather functionality (PTR), and, most impor-
tantly, objects that support the binder framework itself
(BINDER, HANDLE and their “weak” variants).

When the kernel driver handles the transaction, it pro-
cesses each embedded object and performs all the nec-
essary operations to convey it to the other end. This is
known as object translation. Each object type mandates
different operations to be taken for its translation. For
example, say that process wants to pass file descrip-
tor 10 to process . To do that, process prepares a
new transaction containing an object of type FD speci-
fying fd number 10. During transaction processing, the
kernel will allocate a new unused fd in process (say
54) and will link the new fd to the same underlying file
as that of process . When process reads the trans-
action, it will see an object of type FD consisting of fd
number 54, ready for further interaction. Notice how the
driver changes details of the object being translated (in
this case, the fd number), so that they will make sense
when they are read by the other side.
Object translation might fail for numerous reasons, in-

cluding insufficient permissions (SELinux checks), incor-
rect object’s specification by the user or internal errors
(e.g. failure to allocate memory or some other logic dis-
crepancy). When some object fails to be translated, the
entire transaction is considered erroneous and not deliv-
ered to the other side. In the error code flow, the driver
cleans up the transaction buffer, effectively undoing the
translation of the objects that were translated success-
fully. The offending object, however, is not cleaned-up.
This makes sense, as the function responsible for the
translation should clean-up for itself if it returns with an

Figure 1: Binder objects and references.

error (the outer code flow does not know which step in
the translation failed).

2.4 Binder Objects and References

To talk with a process, the sending process must have a
reference to a Binder object owned by the destination pro-
cess. (When we say “Binder object”, we mean an object
of type “Binder”.) In this manner, the Binder object acts
as an endpoint for Binder transactions.

Binder objects are identified differently depending on
the process that refers them. From the perspective of the
process that owns the Binder object, they are identified
using an 8-byte value called ptr, which is opaque from
the kernel perspective. We will call Binder objects iden-
tified in this manner local Binder objects. A local Binder
object is represented using a binder_node structure in
kernel-land.

Other processes refer to the destination’s Binder object
using a 32-bit value called handle. When identified in this
manner, they are referred to as remote Binder objects. In-
ternally, the handle value is mapped to a kernel object
called binder_ref that in turn references the node. See
Figure 1.

Binder objects are unique and unforgeable. The ker-
nel ensures their uniqueness by maintaining their iden-
tity. In particular, the kernel ensures that only one local
Binder object with a given ptr exists per process. In ad-
dition, the kernel ensures that a process can have only
one reference for a particular Binder object.

A process can communicate a Binder object to another
process, thereby giving the other process access to the
object. The communication is done by embedding spe-
cial objects within a Binder transaction. The steps taken
in this kind of communication change depending on the
way the Binder object is identified (local or remote), but
the result is the same: A remote Binder object is cre-
ated on the other side to refer to the Binder object being
passed. It is impossible to forge a reference to a Binder
object without having other process passing it.

Passing a remote Binder object. As already dis-
cussed, a remote Binder object is identified using a handle
value. To pass a remote Binder object to another process,
a new transaction has to be prepared, containing an ob-

3

ject of type HANDLE with the relevant handle value spec-
ified.
When the transaction is processed by the kernel and

the object is being translated, a new Binder reference
(binder_ref) in the destination process is being created,
if one not already exists in the destination for this partic-
ular Binder object. During the creation of the new Binder
reference, a new handle value is being allocated for it (to
let user-space refer to it). When the destination process
reads the transaction, it sees an object of type HANDLE
with the new handle value just allocated. See Figure 2.
(If a Binder reference already exists for the Binder object
being handed over, the kernel just uses the handle value
of the existing Binder reference.)
Passing a local Binder object. A local Binder object

is identified using a ptr value. To pass a local Binder ob-
ject, an object of type BINDER is embedded in a transac-
tion, containing the ptr value of the Binder object being
passed.
During transaction processing, a new Binder node

(binder_node) is created in the sending process (if not
already exists) and a new reference (binder_ref) is cre-
ated for it in the receiving process (if not already exists).
The kernel driver also rewrites the transaction’s object
type from BINDER to HANDLE, specifying the handle value
to use when referring to this Binder object.
Bootstrapping. As Binder objects are handed over

using transactions, and transactions are sent to Binder
objects, this begs the question: How communication is
bootstrapped between processes?
In Binder, a special process is designated to be the con-

text manager. This process owns a special Binder ob-
ject, accessible by all processes using the handle value
0. To bootstrap communication, processes register with
the context manager. In the registration message, pro-
cesses state their name and pass a BINDER object. A new
reference (and handle) is created in the context manager,
which maintains a mapping between names and handles.
Other processes can then lookup a particular name with
the context manager. If the name exists and a permission
check passes, the context manager will transfer the han-
dle stored by it back to the requester (by embedding an
object of type HANDLE in the reply transaction). Through
the newly received reference, the requester can interact
with the original process (i.e. sending transactions to it).

2.4.1 Strong and Weak References

There are two types of references, strong and weak. A
strong reference to a Binder object is needed to send trans-
actions to it. Strong references are passed using the ob-
ject types BINDER (local) and HANDLE (remote).

Aweak reference is used in situations where there is no
need to send transactions. For instance, it is often used

for receiving death notifications (see below). Weak ref-
erences are passed using the object types WEAK_BINDER
(local) and WEAK_HANDLE (remote).
A strong reference can be demoted to a weak refer-

ence. However, a weak reference cannot be promoted to
a strong one, unless a strong reference is received from
a peer. (The BC_ATTEMPT_ACQUIRE command supports
such promotion, but it is not implemented in Android
currently.)

2.4.2 Refcounting

Generally speaking, if an entity references some object,
that object counts how many references it got. When
no references exists, the object may be released. This is
called refcounting, and it is a commonly used technique
to handle automatic object de-allocation in the Android
platform (sp<>, wp<>).
Since in Binder we have references to Binder objects

that live in a different process, the concept of reference
counting is expanded across process boundaries:

1. User-space object references a binder_ref ker-
nel object. User-space informs about refcount-
ing changes via the commands: BC_ACQUIRE and
BC_RELEASE for strong increment or decrement,
and BC_INCREFS and BC_DECREFS for weak incre-
ment or decrement. These strong/weak reference
counts are stored in the binder_ref structure.

2. binder_ref references a binder_node kernel ob-
ject. The reference count is maintained by the
kernel and called “internal” by the driver code.
The internal strong reference count is maintained
in binder_node’s field internal_strong_refs.
The internal weak reference count is implicitly
tracked via a list tracking all of the binder_ref ob-
jects referencing this node.

3. binder_node references an object in user-space.
To inform about changes in refcounting, the
kernel return commands for user-space to per-
form: BR_INCREFS, BR_ACQUIRE, BR_DECREFS and
BR_RELEASE. User-space acknowledges the change
using BC_INCREFS_DONE and BC_ACQUIRE_DONE.
These reference counts are partly tracked by the
kernel via the fields local_[strong|weak]_refs
of binder_node.

2.4.3 Death Notifications

Death notifications is a unique Binder feature, allowing
a process to be notified when a Binder object dies. This
is useful for de-allocating resources associated with the
remote Binder object and used throughout the Android
platform.

4

(a) Before (b) After

Figure 2: Passing remote Binder object from to .

3 The Vulnerability

The Binder vulnerability (CVE-2022-20421) is a use-after-
free vulnerability on binder_proc object. It is trig-
gered by sending a transaction with an object of type
HANDLE or WEAK_HANDLE, and having the target process
die in-parallel while the transaction is in-flight. This re-
sults in a new binder_ref object that is created for the
(dying) target process, which is not cleaned up by the
driver. After the target’s binder_proc object is released,
the newly created binder_ref is left with a kernel
pointer pointing to the freed binder_proc. Later, when
the binder_node referenced by the moot binder_ref
is released, the freed binder_proc is locked using
spin_lock(), resulting in a use-after-free.

In this section, we thoroughly describe all of the steps
needed to trigger the vulnerability.

3.1 Setup

To trigger the vulnerability we need to setup binder IPC
between 3 processes, named, and , all of which un-
der our control. To do that, we abuse the ITokenManager
service that is reachable from the /dev/hwbinder context.
This is a known technique and it is documented in [1].

3.2 Creating a Reference in a Dying Pro-

cess

In this step, we will have process receive a new refer-
ence (binder_ref) after it closes its binder file descrip-
tor; i.e. after a cleanup procedure has been done to its
internal binder structures. As we will see below, this is
not enough to trigger the vulnerability, but it is a crucial
step.
To create new binder references in process , a trans-

action containing special objects must be sent to it. As
discussed in § 2, a new Binder reference can be created
in two ways: by passing a local Binder object or a re-
mote Binder object. The vulnerability can be triggered
only by sending a remote Binder object, using the ob-
ject types HANDLE and WEAK_HANDLE. In this section, we
will concentrate on triggering it with WEAK_HANDLE. See

Appendix B on how the vulnerability could be triggered
with HANDLE.
Since new references can be created only as a result

of a transaction, and we cannot send a new transaction
to a process that has already died, our objective seems
impossible. This is where we exploit a race condition in
the driver. We will have process sending process
a transaction containing a WEAK_HANDLE object, and we
will arrange process to close its Binder file descriptor at
the same time. Since process already begun processing
the transaction, thinking is alive, it will not be aware
that has died in the meanwhile. It will recognize that
 has died only at the very last step – when it will try to
place the new transaction on the work queue of one of
’s Binder threads. At this point, though, all of the ob-
jects carried by the transaction were already translated,
which is enough for our purposes.

The race condition window is fairly large. It begins
with the calls:

ref = binder_get_ref_olocked(proc,
tr->target.handle, true); 1

if (ref)
target_node = binder_get_node_refs_for_txn(

ref->node, &target_proc,
&return_error); 2

In 1 , the handle value corresponding to ’s node (the
target of the transaction) is looked-up in ’s data struc-
tures. If found, it returns a binder_ref structure. In
2 , ’s binder_proc is verified to be alive (indirectly by
testing if node->proc is non-NULL). If so, a refcount is
taken on the target node and’s binder_proc to ensure
they are no freed for the duration of the transaction. The
race window ends by the time the WEAK_HANDLE object
is translated by the driver. So, to win the race, we must
have process alive before the call to 2 , and it must be
already dead (i.e. binder_deferred_release() com-
pleted) by the time the WEAK_HANDLE object is translated.
Appendix C describes howwemanaged towiden the race
window so we win the race every time.

To sum it up: If this race is won, process
will reach the code that translates binder objects af-
ter binder_deferred_release() was completed for

5

process . The transaction carries an object of type
WEAK_HANDLE, so a new Binder reference will be created
in the context of process after it died.

3.3 Causing Translation Error

We have not arrived at a use-after-free condition yet.
Closing the Binder file descriptor does not necessarily
free the internal binder_proc structure, as it is ref-
erence counted. When process sends a transaction
to process , it checks that it is alive and increment
the reference count on ’s binder_proc. When pro-
cess done with the transaction, success flow or error
flow, it will drop this reference, potentially causing the
binder_proc structure to be kfree()’d.
If we won the race described above, we are guaran-

teed to reach the error flow of the transaction processing.
Before dropping the last reference to ’s binder_proc,
the error flow ensures to cleanup the artifacts of the
translated objects – essentially undoing the effect of
each translation made. In this cleanup procedure, per-
formed in binder_transaction_buffer_release(),
the newly created reference in (as a result of the
WEAK_HANDLE translation) is deleted. This is perfectly
fine, so no memory corruption, yet.
The problem arises if a translation error occurs dur-

ing the translation of the weak handle object, i.e. if
binder_translate_handle() returns with error. In
such a case, the objects that will be cleaned-up in the
error flow will be the the objects that were successfully
translated so far. So, the weak handle object will not be
cleaned-up in the error flow.
On top of that, binder_translate_handle() func-

tion itself fails to clean-up the reference if it returns with
an error in a certain condition. The lack of clean-up by
the function binder_translate_handle() is exactly
the root cause of the vulnerability. Combining this fact
with the race condition, we can create a new Binder ref-
erence that will never be cleaned-up by the driver. This
is bad news, as will be explained in the next section § 3.4.

Weak handle’s translation error. To better under-
stand how a weak handle’s translation can result in an
error and lack of clean-up, we need to go through the
steps taken when translating remote Binder objects:

1. The handle value specified by the sender (process)
is mapped to a Binder reference (binder_ref), from
which a pointer to the Binder object’s binder_node
structure is obtained.

2. If the transaction’s target process (process) differs
from the owner of the Binder object (process):

(a) A reference to the Binder object being com-
municated is looked-up in the target process
(process in our case). If one is not already
present, it is allocated and inserted to the rele-
vant data structures of the target process.

(b) A reference count is taken on the binder_ref,
whether it was newly created or not.

If the last step (taking a reference count) resulted in an
error, the whole translation is considered unsuccessful,
and the newly created binder_ref is never cleaned-up.
It remains to show how the last step can fail, and how
this failure could be triggered.

The last step is performed by the function
binder_inc_ref_for_node(), invoked with a
pointer to the newly created binder_ref. In
binder_inc_ref_olocked(), a weak reference is
taken on the new reference. Since it is a new reference,
a weak reference is also taken on the node it points to.
This is where the error condition will be injected:

static int binder_inc_node_nilocked(struct
binder_node *node, int strong,

int internal,
struct list_head *target_list)

{
struct binder_proc *proc = node->proc;

if (strong) {
...

} else {
if (!internal)

node->local_weak_refs++;
if (!node->has_weak_ref 1 &&

list_empty(&node->work.entry) 2) {
if (target_list == NULL) {

return -EINVAL; 3
}

binder_enqueue_work_ilocked(&node->work,
target_list);

}
}
return 0;

}

In our flow, strong is false and target_list is
NULL. So for this function to return -EINVAL error 3 ,
we must have node->has_weak_ref == 0 1 and an
empty node’s work list 2 . This can be done syn-
chronously when passing weak Binder references, and
this is where a third process, process , comes in.

Creating the faulty Binder reference. Before the
race condition is triggered (by processes and), pro-
cess will ensure that it has a Binder reference that can
cause this error flow. The faulty Binder reference will
point to a node in process . The following steps are
taken by process to make the Binder reference faulty:

6

1. spawns a new thread, call it .

2. sends a transaction containing an object of type
BINDER (strong local Binder object). When this ob-
ject is translated, a new binder_node is created in
 and a new binder_ref is created in .

3. Process accepts the new reference and take a
strong reference on it (to keep it alive).

4. At this point, the has_weak_ref field of the new
binder_node equals 0. However, as part of its cre-
ation process, the new binder_node created in
is inserted to a work list of the binder thread that
created it, namely . When processes its work
list (by invoking BINDER_READ_WRITE ioctl with a
read buffer), it sets node->has_weak_ref to 1. We
wish to avoid that and also remove the node from
any list. To do this, invokes an ioctl command
BINDER_THREAD_EXIT. This ioctl causes the work
list of to be released, deleting the node from it
without ever setting has_weak_ref. Exactly what
we wanted.

Wrap up. The communication between processes
and results in a faulty Binder reference created in .
This faulty reference is then passed to process , which,
at the same time, closes its file descriptor. If the race con-
dition is won, a new Binder reference (binder_ref) re-
ferring to ’s node will be inserted to process , after its
death (after binder_deferred_release() completed).
Further, this reference is never cleaned-up by the driver.

3.4 The use-after-free

The binder_ref structure contains a field called
proc that points to the owing binder_proc. In our
case, the stale Binder reference is owned by pro-
cess , so ref->proc points to ’s binder_proc.
’s binder_proc gets kfree()’d when the
last reference count for it is dropped. After
binder_deferred_release() was completed for
, the last reference count of ’s binder_proc is taken
by process (as it is in a middle of a transaction directed
at). Therefore, when process finish processing the
transaction to , it will drop the last reference on ’s
binder_proc and free it. This means that ref->proc
contains a stale pointer to a freed location.
It is not a use-after-free vulnerability if ref->proc is

not used. Indeed, there is one code flow that uses it – it
happens when process closes its Binder file descriptor
(or exits).
When process closes its Binder file descriptor, the

function binder_deferred_release() will be called
for it. As discussed in § 2.2, this function releases

all of the Binder nodes owned by , by invoking
binder_node_release() on each one. During node re-
lease, all of the node’s references are enumerated when
death notifications are handled:

static int binder_node_release(struct binder_node *
node, int refs) {
...
hlist_for_each_entry(ref, &node->refs,
node_entry) {

binder_inner_proc_lock(ref->proc); 1
if (!ref->death) {

binder_inner_proc_unlock(ref->proc); 2
continue;

}
...

}
...

}

We see that the first use-after-free is in 1 , as
ref->proc points to the already-freed’s binder_proc
structure. Note that the stale reference cannot possibly
have a non-NULL ref->death, since its insertion was
racy with its owner death.

The “inner lock” of binder_proc is implemented as a
spinlock, so the use-after-free is only 1 :

spin_lock(&ref->proc->inner_lock);

... followed by an immediate 2 :

spin_unlock(&ref->proc->inner_lock);

3.5 CVE-2022-20421

CVE-2022-20421 is a race condition vulnerability in
the Binder kernel driver that results in a use-after-
free on the binder_proc object. It is reachable from
untrusted_app SELinux domain, and affects all An-
droid devices running on kernels 3.18 to 5.10 with secu-
rity patch level below October 2022.

The vulnerability has few advantages. First, the
binder_proc structure is allocated in the general-
purpose slab kmalloc-1k. Compared with other slabs,
like kmalloc-128, this is a relatively inactive slab, so
there is high likelihood to reliably reallocate the memory
with an object of interest. Second, we managed to win
the race condition 100% of the times (Appendix C), so it
is suitable for reliable exploitation. A third useful prop-
erty of this vulnerability is that the timing of the “use”
is under our control, as we control process . This gives
us more time to prepare the reallocating object for the
use-after-free.

On the negative side, the primitive seemsweak: we can
flip a bit from 0 to 1 for very short amount of time. There
is no other memory corruption inside the critical section

7

that can benefit us. This is a very unique and challenging
situation.
On top of that, the offset of binder_proc’s

inner_lock field varies between devices. During
development we encountered the following offsets: 512
(on an old Samsung Galaxy S21 device), 520 (Samsung
Galaxy S20), 544 (Samsung Galaxy S21) and 576 (Sam-
sung Galaxy S22 and Google Pixel 6). Ideally, we want
an exploit technique that will work universally, with
little or no changes per device.

4 The Primitive

To exploit the use-after-free vulnerability, we will con-
struct useful exploit primitives by taking the following
steps:

Free the vulnerable object: The first step is to trig-
ger the vulnerability and free the vulnerable object
while keeping a pointer to it. In our case, the vulner-
able object is binder_proc and the steps taken to
trigger the vulnerability were described in § 3.

Reallocate the object: After the vulnerable object has
been freed, we reallocate the memory for a different
object or data structure. This allows us to create a
type confusion vulnerability, in which the software
is manipulated to interpret data as a different type.

Exploit the type confusion: Finally, we exploit the
type confusion to extract useful exploit primitive.
In our case, if we reallocate the memory with an ob-
ject Foo, that overlaps binder_proc’s inner_lock
with the field bar, then bar will be interpreted as a
spinlock when we trigger the use-after-free. This
can lead to serious consequences depending on the
original type of bar (pointer, length, refcount, etc).

In this section, we closely examine the spinlock im-
plementation in the Android kernel. To our surprise, the
implementation is more complex than what one might
think, and we managed to extract powerful memory cor-
ruption primitives off of it.

4.1 Spinlocks

Spinlocks are a key synchronization mechanism in the
Linux kernel, used to protect shared resources from con-
current access. When a thread needs to access a shared
resource, it first acquires the spinlock associated with
that resource. If the spinlock is already held by another
thread, the requesting thread spins (loops) until the lock
is released.

Figure 3: The structure of qspinlock

Spinlocks are typically used in situations where the
critical section is short. The reason is that spinlocks im-
plicitly disable CPU preemption, so a long critical section
induces more latency on the system. Spinlocks are also
used when other types of locks (e.g. sleeping locks) are
not suitable (e.g. IRQ handler). See Appendix A for more
detailed information about spinlocks.

In some cases, multiple threads may attempt to acquire
the same spinlock at the same time. To prevent these
threads from starving (spinning indefinitely and wasting
CPU cycles) and improve cache utilization, Linux imple-
ments queued spinlocks, which aremore efficient version
of spinlocks compared to traditional implementations.

4.2 Queued Spinlocks

Queued spinlocks are the default implementation in the
Android kernel since version 4.19 (controlled by the ker-
nel configuration CONFIG_QUEUED_SPINLOCKS). They
work by maintaining a queue of threads that are wait-
ing to acquire the lock. When a thread attempts to ac-
quire a spinlock that is already held by another thread, it
is placed at the end of the queue. The thread at the head
of the queue is then granted the lock when it becomes
available, and all other threads continue to spin until it is
their turn to acquire the lock.

The queued spinlock is implemented using the
qspinlock structure, which is a 4-byte value that is used
to store the lock state. It is broken into 3 sub-fields, as de-
picted in Figure 3. The lock state can be in one of three
states:

Unlocked: The lock is not currently held by any
thread. All sub-fields are 0.

Locked: The lock is currently held by a thread. In this
case, the locked sub-field is non-zero.

Contended: The lock is currently held by a thread,
and there are other threads waiting to acquire the
lock. In this case, (tail, pending) ≠ (0, 0).

We now look at the implementation in more detail.

4.2.1 Queued Spinlocks Implementation

The generic function spin_lock() begins by disabling
preemption on the CPU, and then calling the queued
spinlock specific function:

8

void queued_spin_lock(struct qspinlock *lock);

Similarly, spin_unlock() calls the queued spinlock
specific implementation

void queued_spin_unlock(struct qspinlock *lock);

... and finishes with re-enabling CPU preemption.
The queued spinlock implementation in Linux uses

atomic operations and memory barriers to ensure cor-
rect behavior. Instead of confusing ourselves with such
low-level details, we are going to focus on the core logic
of the implementation, with the goal of extracting useful
exploitation primitives. The following describes the core
logic of the queued spinlock implementation. It is heav-
ily edited from the original and should be considered as
pseudo-code:

void queued_spin_lock(struct qspinlock *lock) {
if (*(u32 *)lock == 0) { 1

lock->locked = 1;
return;

}

if (lock->tail != 0 || lock->pending != 0) 2
goto queue;

lock->pending = 1; 3
while (lock->locked != 0); 4
lock->pending = 0;
lock->locked = 1; 5
return;

queue: ...
}

void queued_spin_unlock(struct qspinlock *lock) {
lock->locked = 0; 6

}

When the lock is in unlocked state 1 , the locked
byte is set to 1 and the function returns – indicating the
lock has been acquired successfully. The thread contin-
ues with executing the critical section.
Say that while the critical section is executing and the

lock is held, another CPU tries to grab the lock. In this
case, the new CPU will see (tail, pending, locked) =

(0, 0, 1), so steps 1 and 2 will be skipped. The new CPU
will raise the pending bit in step 3 , and will spin at step
4 until the locked byte becomes 0.
When the first thread finishes its critical section, it

will release the lock by calling spin_unlock(), which
sets the locked byte to 0 6 . At this point, the spinning
CPUwill see that the locked byte became 0 and will quit
busy-looping. Before returning, it will clear the pending
bit and set the locked byte to 1 5 , indicating lock own-
ership.

Note that if a CPU tries to grab the lock when it is con-
tended (i.e. currently held by a CPU and there are other
CPUs waiting for it), the locking procedure will proceed
with the queue label 2 . This queuing logic will set tail
to last CPU id waiting for the lock, and will enter busy-
looping until the CPU the precedes it in the queue re-
leases it. This is the least useful state for us, so we do not
discuss it any further.

4.3 Extracting Primitives

Wemake the following observations, from an exploit de-
velopment perspective:

• Unlocking only affects the locked byte. Other bytes
are left unchanged.

• Spinning at step 4 is performed only on the locked
byte. Other lock bytes are not checked at this point.

• If the lock is contended, i.e. (tail, pending) ≠

(0, 0), we jump to the queue label in step 2 . En-
tering the queuing logic with arbitrary tail bytes
leads to an uncontrolled memory corruption that is
likely to result in a crash. For this reason, we should
avoid jumping to queue.

By utilizing these observations, we managed to come
up with 3 exploit primitives, presenting different lev-
els of strength. For the description of the prim-
itives, we will denote the lock value by the tuple
(tail, pending, locked).

Semi-Increment Primitive. For this primitive, we
setup2 the lock value to be (0, 0, 𝑥) with 𝑥 > 0 (i.e. the
lock is in locked state). Then, we trigger the “use”, which
will try to acquire the lock. Since the lock appears in
locked state, the pending bit will be set, and the value
of the lock becomes (0, 1, 𝑥). This is a semi-increment
primitive, as the value that overlaps the lock bumped by
0x100.
It should be noted that the CPU which acquires the

lock spins until the locked value (𝑥) becomes 0. This is
a double-edged sword: We can benefit from this situation
because it gives enough time for the rest of the exploit to
proceed. However, if the situation is not rectified, then
after 10-20 seconds the watchdog will crash the kernel.

Semi-Decrement Primitive. Consider what happens
when some other code flow sets the locked field to 0,
while a CPU is spinning on it. In this case, the CPU
will cease spinning and will acquire the lock, which will
become (0, 0, 1). It will stay this way for the duration

2The setup phase is performed by reallocating the freed
binder_proc with different object.

9

of the critical section, which in our case is very short.
spin_unlock() leaves us with (0, 0, 0). This is a semi-
decrement primitive, as the initial value was 𝑥 > 0, and
we managed to drop it to 0.
The semi-decrement primitive can be good for decre-

menting a refcount field. The idea is: we will catch the
field with an object that have a refcount field exactly in
the offset of the inner_lock. We will increment the re-
fcount to 0xff. Next, we will call spin_lock() and the
refcount will change to 0x1ff (as the pending bit has
been set). We will increment the refcount one more time
so it becomes 0x200. The least significant byte (LSB) be-
comes 0, so the CPU stops spinning, andwe get a refcount
of 0x1 for a brief moment. The unlock function sets the
refcount field to 0. Now, to free the object, we will do
another increment + decrement operation. This gives us
a use-after-free on the new object.
There are two issues with this approach. The first is

that we need to find a structure that have a refcount
field exactly at the offset offsetof(binder_proc,
inner_lock). On top of that, we must have the ability
to increment and decrement it at will. As it so happens,
there are handful number of objects with a refcount-like
field at our desired offset in kmalloc-1k. Although it is
possible to do a cross-cache attack to increase the number
of available objects to use, this can reduce the reliability
of the exploit. Also, regardless of reliability, if the off-
set of inner_lock changes between devices, the exploit
technique would not generalize.
The second issue is with the last step: incrementing

a refcount when it is 0. To get a use-after-free on the
new object, we need to be able to increment the ref-
count when it is 0, and then decrement it so it will be
freed. The problem is that refcount_t checks that the
refcount is not 0 when CONFIG_REFCOUNT_FULL is con-
figured. So we might only seek objects that do not use
refcount_t and increment the refcount even if it is zero.
CONFIG_REFCOUNT_FULL was removed from kernels ≥
5.7, so it is a valid approach for newer devices, but then
there is the offset and generalization issue.

Nullifying 2 LSBs Primitive. This primitive begins
like the previous: The initial lock value is (0, 0, 𝑥) with
𝑥 > 0. After triggering the “use", the lock becomes
(0, 1, 𝑥) and the CPU is spinning until the least signifi-
cant byte becomes 0 (the locked byte).
Suppose that other CPU overwrites this memory lo-

cation with (𝑧, 𝑦, 0), where 𝑧 and 𝑦 are completely ar-
bitrary. In this case, the LSB is 0, so the spinning CPU
will stop looping and try to acquire the lock, which be-
comes (𝑧, 0, 1) (notice how 𝑦 was overridden to 0). The
spin_unlock() leaves us with (𝑧, 0, 0).
This primitive is very attractive from exploitation

point of view, as it has the potential to nullify the 2 LSBs

of a pointer.

5 The Exploit

Based on the 2 LSBs nullifying primitive, we have con-
structed a robust and stable exploitation technique that
is generic enough to work on any 8-aligned spinlock off-
set. Using our technique, we were able to bypass mod-
ern Android kernel security mitigations and achieve ar-
bitrary kernel read-write capabilities. Further, we suc-
cessfully tested our technique on 3 Android devices, in-
cludingmultiple vendors (Samsung, Google), various An-
droid versions (12, 13), and various kernel versions (5.4.x,
5.10.x).

Limitations. Despite its strengths, it is important to
note that this technique does have its drawbacks and lim-
itations. For instance, our technique mandates a pre-
emptive kernel running on multiple cores (SMP). This
is necessary to execute the 2 LSBs nullifying primi-
tive, as discussed below. Further, our exploit assumes
that GFP_KERNEL_ACCOUNT and GFP_KERNEL allocations
are serviced from the same kmem_cache. This as-
sumption is true on 5.10 kernels [9], and on 5.4 ker-
nels with CONFIG_MEMCG_KMEM disabled or booted with
cgroup.memory=nokmem command line parameter. The
latter was the case on several Samsung devices we sur-
veyed, including the tested device Samsung Galaxy S21
Ultra running on kernel version 5.4.129. Additionally, our
techniquemay bemore challenging to implement and ex-
ecute than other exploitation techniques.

5.1 Our Target Allocation

To make the exploit somewhat resistant to changing off-
sets of the inner_lock, an ideal object is an array of
pointers. This way, we can adjust the exploit so that we
always corrupt a pointer (i.e. zeroing out its 2 LSBs), as-
suming that the inner_lock offset aligns to 8.

There are multiple code flows in the kernel that allo-
cate an array of pointers. An interesting one is the file
descriptor table (fdtable). The file descriptor table is an ar-
ray of struct file pointers, where each struct file
represents an open file (containing information about its
position, flags, inode, etc). The file descriptor table is
linked to the process’ files_struct with the fdt field.
File descriptors (fd) are just indices to the process’ file
descriptor table.

In Linux, the files_struct itself contains an inline
version of the file descriptor table, capable of storing 64
open files without allocating a larger file descriptor table.
This is an optimization to reduce the memory footprint

10

for processes that use several file descriptors. If a pro-
cess uses more than 64 files, the file descriptor table is
allocated as a different structure, by calling the function
alloc_fdtable(nr).
There are two cases in which the file descriptor table

is allocated. The first is when a new process is being cre-
ated using fork() (or clone() without CLONE_FILES).
If the parent process has 𝑛𝑟 > 64 file descriptors,
alloc_fdtable(nr) is called for the child. Otherwise,
the inline fdtable is used.
The second case is when exapnd_files() is called to

expand a process’ file descriptor table. We can reach this
function by using the dup2() system call:

int dup2(int oldfd, int newfd);

The dup2() system call creates a new file descriptor
(newfd) that refers to the same open file as an existing
descriptor (oldfd). If newfd was already open, it will be
closed before being reused.
If the process started its life with ≤ 64 file descrip-

tors, then when we invoke dup2(oldfd, newfd) with
new_fd ≥ 64, its fdtable must be expanded to accommo-
date newfd, so a larger file descriptor table is allocated.
Regardless of the reason, if a larger allocation of

an fdtable has to be made, it is performed by the
alloc_fdtable(nr) function:

struct fdtable *alloc_fdtable(unsigned int nr)
{

struct fdtable *fdt;
void *data;

nr /= (1024 / sizeof(struct file *));
nr = roundup_pow_of_two(nr + 1);
nr *= (1024 / sizeof(struct file *)); 1

...

fdt = kmalloc(sizeof(struct fdtable),
GFP_KERNEL_ACCOUNT);
if (!fdt)

goto out;
fdt->max_fds = nr;
data = kvmalloc_array(nr, sizeof(struct file *),
GFP_KERNEL_ACCOUNT); 2

if (!data)
goto out_fdt;

fdt->fd = data;

...

return fdt;

out_fdt:
kfree(fdt);

out:
return NULL;

}

When nr < 128 it is rounded up to 128 at 1 . An ar-
ray of 128 struct file pointers (1024 bytes) is then al-
located in 2 . The allocation will use the general pur-
pose cache kmalloc-1k. This is perfect for us, as this
allocation uses the same cache as our vulnerable object,
binder_proc.
For the rest of the exploit we will use the dup2() func-

tion to reach this allocation. Using this method we can
support inner_lock offsets ≥ 512. This is acceptable for
us, as we did not encountered a smaller offset. Otherwise,
we would have used the fork() method.

5.2 Nullifying 2 LSBs of file pointer

In this section, we adapt the nullifying 2 LSBs (least
significant bytes) primitive to corrupt a struct file
pointer.

Recall that to trigger this primitive, we need to enter
spin_lock() with a lock value (0, 0, 𝑥) where 𝑥 > 0.
To do that, we will reallocate binder_proc with a TTY
write buffer that contains the value 0x00000041 repeat-
edly. A TTY write buffer is allocated using kmalloc()
when we first write data to a pseudo-terminal (PTY) we
opened. One of its useful properties is that we can store
arbitrary binary information in it. The following snip-
pet results in an allocation of a TTY write buffer in the
kmalloc-1k general cache:

char data[1024];
int pty_fd = open("/dev/ptmx", O_RDWR);
write(pty_fd, data, 1024);

After reallocation, wewill trigger the use-after-free, by
closing process , so that spin_lock() will be called.
One of the 0x00000041 values in the TTY write buffer
will overlap with the lock value and will change to
0x00000141 (the pending bit is set). The CPU will now
spins until the LSB, which is currently 0x41, becomes 0.
At this point, from another CPU, we will free the TTY

write buffer and reallocate them as file descriptor table
using the dup2() technique. There is one obstacle in this
approach: the allocation of the file descriptor table, de-
spite being a plain kmalloc() (not kzalloc()), is ini-
tialized to 0 as a result of the init_on_alloc policy
(which is enabled by default in Android kernels). That
is too bad, since a value of 0 will cause the spinning CPU
to prematurely exit the loop, before any struct file
pointer got a chance to be written at that location.

To cope with that, we will stress the spinning CPU
with interrupts, attempting to slow it down significantly
while it spins. By doing so, we hope to win a tiny race
condition where the allocation of the fdtable is initialized
to 0 and a struct file pointer is written, without the spin-
ning CPU noticing that a value of 0 was written there for

11

a brief moment. We found that the timerfd technique
of Jann Horn is suitable to accomplish this goal [3].
Even if we managed to win this tiny race using in-

terrupts, there is no guarantee that the struct file
pointer that overlaps the lock will have LSB 0. And yet,
having LSB 0 is crucial for the success of the primitive,
otherwise the CPU keeps spinning indefinitely.
To solve this issue, we repeatedly perform

dup2(random_fd, target_fd) where target_fd is
calculated as binder_proc’s inner_lock offset divided
by 8 (i.e. so that fdt[target_fd] overlaps with the
lock).
Depending on the size of filp_cache and the size

of struct file, we can calculate the probability of
a random struct file to have LSB 0. For example,
if the filp_cache is 2 pages in size and the size of
struct file is 0x140 bytes, we will have 7 out of
25 struct files with LSB 0, per slab. So, repeating
dup2(random_fd, target_fd) 16 times guarantees a
success rate > 99%.
As soon as a struct file with LSB 0 is placed, the

spinning CPU will exit busy-looping, nullifying the 2nd
LSB. Exactly the corruption we were shooting for.
To summarize, the following steps will be taken to nul-

lify the 2 LSBs of a struct file pointer:

1. Trigger the vulnerability, so that the binder_proc
structure of “Process” is freed and a pointer to it is
kept in ref->proc. Avoid triggering the “use” yet
(i.e. do not close “Process ”).

2. Reallocate the binder_proc structure by spraying
TTY write buffers. Make the TTY write buffers con-
tain 0x00000041 repeatedly (i.e. LSB non-zero and
the rest are zero).

3. Trigger the “use” on CPU 4: close “Process ” so
that the spin_lock() functionwill be called on one
of the 0x00000041. This will change the value to
0x00000141 and CPU 4 will spin until the LSB be-
comes 0.

4. Raise timerfd interrupts on CPU 4 while it spins in
spin_lock() function.3 This will slow down CPU
4 significantly, allowing us to win a tiny race with
the initialization to 0 of the allocated file descriptor
table.

5. Free the TTY write buffers and reallocate them with
the fdtable allocation (the target allocation) using
the dup2() technique.

3To make the interrupts raise on CPU 4, we need to setup the
timerfd on CPU 4. We cannot do this when the “use” already hap-
pened (CPU 4 is non-preemptible from this point onwards). Therefore,
we setup the timerfd before triggering the use-after-free, which re-
quires some tuning.

Figure 4: Physical memory shaping

6. Continue making dup2(random_fd, target_fd)
until a struct file pointerwith LSB zero is placed
in this offset. When this happens, CPU 4 will stop
spinning and exit the spin_lock() function. Af-
ter the spin_unlock() function, the struct file
pointer that was placed there will be corrupted
(i.e. its 2 LSBs will be zero).

5.3 Exploit Strategy

Our assumption is that we can corrupt (i.e. zeroing out 2
LSBs) a struct file pointer at a known fd number. We
shall now take the following steps to achieve arbitrary
R/W capabilities:

1. Shape physical memory so that beginning at an
address aligned to 16 pages we will have the
kmalloc-1k slab (containing object at our control),
followed by 4 slabs of filp, as depicted in Figure 4.
This way, if we corrupt any struct file pointer
residing on one of these filp caches, then we will
land on the first object in the kmalloc-1k cache.

2. Fill the kmalloc-1k slab with TTY write buffers,
so that we can fill it with arbitrary data. Each TTY
write buffer will contain a fake struct file.

3. Invoke close() on the corrupted fd. This will end
up freeing the TTY write buffer.

4. Catch the freed TTY write buffer with an array of
struct pipe_buffers.

5. Leak a pipe_buffer to bypass kASLR.

6. Fake a pipe_buffer and use the pipe to achieve ar-
bitrary R/W primitive to the linear mapping.

7. Override addr_limit to gain arbitrary R/W primi-
tive, bypassing AArch64 UAO feature.

Below we describe each step in detail.

5.4 Shaping Physical Memory

The rest of the exploit assumes that the corrupted
struct file pointer points to a TTY write buffer that
is under our control. In this step we will shape physical

12

memory to make this assumption true, with high likeli-
hood. (Do not confuse this TTY write buffer with the one
used to trigger the nullifying 2 LSBs primitive.)
To see if such an assumption is even feasible, we need

to look at the physical properties of the slabs used for the
allocation of struct file and the TTY write buffer.
struct files are allocated from a dedicated mem-

ory pool called filp_cache. The filp_cache con-
sumes 2 physical pages per slab and can store up to 25
struct files per slab4.
TTY write buffers are allocated from the kmalloc-1k

general purpose cache. The kmalloc-1k cache contains
up to 32 objects per slab. The size of each object is 1024
bytes, so a total of 8 pages are used per slab.
Our general plan is to spray many struct files and

TTY write buffers in a particular way, so that at the be-
ginning of a 16-pages aligned address we have TTY write
buffers with controlled content, and struct files are
positioned after them, as in Figure 4.
Observe that if we corrupt any struct file posi-

tioned in any of the filp caches shown on Figure 4,
the resulting pointer will point to the beginning of the
kmalloc-1k slab (which is filled with TTY write buffers
with controlled content). For this reason, we architect
our exploit to use random files from these filps when
performing the dup2(random_fd, target_fd) opera-
tions.

Spraying strategy. Our spraying strategy is to repeat
the following as much as we can: allocate 32 TTY write
buffers, followed by opening 25 × 4 = 100 files. By doing
this, we wish that the allocation of the first 32 objects
will create a new slab for kmalloc-1k. Additionally, we
expect that the next 100 allocations of files will create
new 4 slabs for filp_cache.
It is important to note that there is a system-wide lim-

itation on the number of open pseudo-terminals (4096 by
default on Android; see /proc/sys/kernel/pty/max).
For this reason, we can repeat the above up to 4096/32 =
128 times.
Clearly, wishes not always come true. To improve

statistics and to ensure that new slabs are allocated
when we spray, we do some “warm-up” rounds. In the
warm-up, we allocate many objects in filp_cache and
kmalloc-1k. In this phase we do not use TTY write
buffers for the spray – as these are a limited and pre-
cious resource. Instead, we simply open /dev/hwbinder
devices – this allocates struct file from filp_cache
and binder_proc from kmalloc-1k.
For the warm-up phase, it should be noted that

there is a per-process limitation on the number
of open file-descriptors (32768 on Android; see

4The actual number might change depending on the kernel version.

(a) Corrupted file lands on a controlled object in kmalloc-1k

(b) Corrupted file lands on some unknown page

(c) Corrupted file lands on other struct file

Figure 5: Possible situations after shaping

/proc/[pid]/limits).5 Consequently, we distribute
the warm-up phase across multiple processes.

Handling shaping failures. To make the exploit
more reliable, we must detect whether the shaping suc-
ceeded or not. For this, we need to differentiate between
these situations (Figure 5):

1. The corrupted file pointer points to our TTY write
buffer in kmalloc-1k. This is the desired situation.

2. The corrupted file pointer points to some unknown
page. In this case, any operation done on the file
might create havoc on the system. Therefore, we are
careful to block the process holding the corrupted

5There is also a system-wide limitation on the number of open file
descriptors for all processes – see /proc/sys/fs/file-max. On Sam-
sung Galaxy S22 it is 583277, which is sufficiently large for our pur-
poses.

13

file, until the exploit succeeds and we can rectify the
situation.

3. The corrupted file pointer points to some
struct file. We could have keep the cor-
rupted file’s process alive in this case too. However,
to minimize load on the system that might add-up
on each failed attempt, we send the file to a desig-
nated “graveyard" process (we do this using UNIX
sockets). The file will live in the graveyard process
until the exploit succeeds and the situation can be
corrected.

We classify each situation by indirectly deduce the
value of bits from the corrupted file pointer. The idea
is as follows: we invoke an operation (system call) on
the corrupted fd and, from its result, deduce the value of
various bits. For example, one technique we used was
to call timerfd_gettime() to infer whether fdget()
succeeds on the struct file or not:

bool fdget_succeed(int fd) {
int ret = timerfd_gettime(fd, NULL);
if (ret == -1 && errno == EBADF)

return false;
else if (ret == -1 && errno == EINVAL)

return true;
/* Unreachable. "fd" is not timerfd file. */

}

Assuming the corrupted fd has not landed on a
timerfd type of file by chance, this method will tell
us whether fdget() passes on the corrupted file. If it
passes, it tells us that the file’s count is greater than 0
and that the file’s mode do not have the FMODE_PATH bit
set. This gives us two bits of information. We proceed
in similar ways to extract more bits of information about
the file.
Note that any operation that we invoke on the cor-

rupted file must avoid dereferencing any pointer of it,
since we can be in the unknown page situation. This
greatly limits the number of system calls we can call to
extract information. For example, this rules out trivial
methods such as reading /proc/[pid]/fdinfo/[fd].
Additionally, any system call’s implementation that calls
LSM hooks (e.g. fcntl()) are out of the game, since the
LSM hooks dereference f_security.

All in all, in cases of failure, we restart the exploit and
try again. On success, we proceed to the next step, clos-
ing the corrupted file descriptor.

5.5 Closing the fd

Our strategy will be to call close() on the corrupted fd,
so that we will free the TTY write buffer. To pull this off,
we need to craft a fake struct file, so that the kernel
will happily free the object for us.

When calling close(), the function filp_close() is
ended up being called (fs/open.c):

int filp_close(struct file *filp, fl_owner_t id)
{

int retval = 0;

if (!file_count(filp)) { 1
printk("VFS: Close: file count is 0\n");
return 0;

}

if (filp->f_op->flush) 2
retval = filp->f_op->flush(filp, id);

if (likely(!(filp->f_mode & FMODE_PATH))) { 3
dnotify_flush(filp, id);
locks_remove_posix(filp, id);

}
fput(filp); 4
return retval;

}

Our goal is to reach the function fput(filp) 4 , as it
decreases the file count by 1, and if it reaches 0, will free
the file structure. To reach it, we need to satisfy three
conditions:

1. The file count must be 1. This ensures that we pass
the first condition 1 and also makes sure the file
struct will be freed by fput() (instead of having its
count field decreased by 1).

2. The file operations pointer (f_op) must be a valid ker-
nel pointer, and f_op->flush must equal 0. This is
required to make sure we pass the second condition
2 . We can do this by having f_op pointing to a
fixed address in the kernel that is known to contain
8 bytes of zeros.

3. The file modemust have the FMODE_PATH bit set. This
is required to avoid entering the third condition 3 .

If the above conditions are satisfied, fput() will call
__fput(), the actual function that frees the file struct:

static void __fput(struct file *file)
{

struct dentry *dentry = file->f_path.dentry;
struct vfsmount *mnt = file->f_path.mnt;
struct inode *inode = file->f_inode;
fmode_t mode = file->f_mode;

if (unlikely(!(file->f_mode & FMODE_OPENED))) 1
goto out;

...
out:

file_free(file); 2
}

14

If the FMODE_OPENED bit is not set 1 , we immediately
reach file_free(file) on 2 (fs/file_table.c):

static inline void file_free(struct file *f)
{

security_file_free(f);
if (!(f->f_mode & FMODE_NOACCOUNT))

percpu_counter_dec(&nr_files);
call_rcu(&f->f_u.fu_rcuhead, file_free_rcu);

}

security_file_free(f) ensures that f_security
is not NULL before freeing it, so, setting f->f_security
to NULLmakes it return immediately. Then, after an RCU
grace period, file_free_rcu() will be called:

static void file_free_rcu(struct rcu_head *head)
{

struct file *f = container_of(head, struct file,
f_u.fu_rcuhead);

put_cred(f->f_cred);
kmem_cache_free(filp_cachep, f); 1

}

The call to kmem_cache_free() will free the file,
pointed by f. Importantly, fwill be freed back to the slab
cache it allocated from, not filp_cachep as supplied in
the first argument 1 . In our situation, f is a fake struct
file, originally allocated from kmalloc-1k cache. The
call to kmem_cache_free(filp_cachep, f) will free
f as if the call was plain kfree(f), except for a warning
message outputted on kmsg:

cache_from_obj: Wrong slab cache. filp but object is
from kmalloc-1k

The reason for this behavior is that Linux’s SLUB al-
locator determines the target slab from the virtual ad-
dress of the object being freed, not the argument passed
to kmem_cache_free().
The end result is that after the corrupted fd is closed, a

TTY write buffer is freed, while still having other refer-
ence (the TTY fd), pointing to the same (freed) location.
In other words, we were upgraded to a use-after-free sit-
uation on the TTY write buffer.

5.6 Leaking Pipe Buffer

We are going to leverage this use-after-free situation by
leaking the content of struct pipe_buffer:

/**
* struct pipe_buffer - a linux kernel pipe buffer
* @page: the page containing the data for the pipe

buffer
* @offset: offset of data inside the @page
* @len: length of data inside the @page
* @ops: operations associated with this buffer

* @flags: pipe buffer flags
* @private: private data owned by the ops
**/

struct pipe_buffer {
struct page *page;
unsigned int offset, len;
const struct pipe_buf_operations *ops;
unsigned int flags;
unsigned long private;

};

This structure interests us since by leaking it we get a
pointer to a struct page and, most importantly, a pointer
to the pipe operations (ops) which is stored on the ker-
nel data section. This means that ops is offsetted by a
constant amount from the beginning of the kernel im-
age. (The “constant amount” may change between dif-
ferent kernel versions and configurations, but would still
be the same on a per-device per-kernel basis.) Therefore,
having leaked ops, we can calculate the base of the ker-
nel image by subtracting a fixed offset from it, thereby
bypassing the kASLR mitigation.

When a pipe is allocated using the system call pipe(),
an array of 16 struct pipe_buffer is allocated using
kcalloc() (fs/pipe.c):

struct pipe_inode_info *alloc_pipe_info(void)
{

struct pipe_inode_info *pipe;
unsigned long pipe_bufs = PIPE_DEF_BUFFERS;

pipe = kzalloc(sizeof(struct pipe_inode_info),
GFP_KERNEL_ACCOUNT);

...

pipe->bufs = kcalloc(pipe_bufs, sizeof(struct
pipe_buffer), GFP_KERNEL_ACCOUNT); 1

...
}

The size of struct pipe_buffer is 40 bytes, so the
pipe->bufs array is of size 16 × 40 = 640 bytes and as
such it will be allocated in kmalloc-1k general cache.
This is perfect for us, since we can catch the freed TTY
write buffer with this array of pipe buffers.

Now, the idea is to ensure that the page and ops fields
of single pipe buffer are populated, and then read the con-
tent of the pipe buffer using the second reference we have
from the TTY fd.

Populating one pipe buffer can be easily done by writ-
ing to the pipe, say 0x1000 bytes. We ensure that this
operating does not block by having the write-end of the
pipe entering non-blocking mode.

Reading from the overlayed TTY write buffer is more
involved than simply invoking read() on the TTY fd.
When writing data to a TTY write buffer, the data is
written to a TTY write buffer (see do_tty_write() in

15

drivers/tty/tty_io.c). The write buffer is then passed to the
function n_tty_write() (in drivers/tty/n_tty.c), which
internally calls pty_write() (in drivers/tty/pty.c). In
pty_write(), the data of the write buffer is copied to
other end of the TTY. In our case, the other end is under
our control, so we can read the copied data by invoking
read() on the TTY fd.

We conclude that we cannot directly read the contents
of the TTY write buffer, since we read a copy a data pre-
viously written. However, consider the case where we
block the writer after data is written to the write buffer,
but before the data in the write buffer is copied to the
other end. In such a case, any data written to this mem-
ory location while the writer is blocking will be copied
to the other end when the writer unblocks.
So, to leak a pipe buffer, we write zeroes to the TTY

write buffer and block the writer thread before the write
buffer is copied. While the writer thread is blocking, we
use another thread to write data to the corrupted pipe
(say, 0x1000 bytes). Recall that this operation will pop-
ulate the struct page and ops pointers of one of the
pipe_buffers. We then unblock the writer thread and
let the data being held in the write buffer be copied to
the other end of the TTY – this data will now contain the
pipe_buffer contents. We proceed by reading from the
TTY fd, thereby leaking the pipe_buffer.
It remains to show how can we block the writer thread

exactly at the wanted position. To accomplish that, we
use the software flow control capabilities of the TTY
driver. It is possible to suspend transmission or reception
of data using the ioctl command TCXONC invoked on
the TTY fd. If the argument is TCIOFF then this will cause
the writer thread to block on n_tty_write(). To un-
block the writer thread, we use TCION instead of TCIOFF.
Exactly the functionality we seeked.

5.7 Arbitrary R/W to the Linear Mapping

Up until now, the situation is as follows: we bypassed
kASLR (by leaking the content of a pipe buffer) and we
have two references to the same memory location: TTY
write buffer and the array of pipe buffers. By writing to
the TTY fd, wewrite data to the TTYwrite buffer –which
modifies the contents of the pipe buffer array.
We can achieve write-what-where and arbitrary-read

primitives using the corrupted pipe. The idea is to use
the TTY fd to overwrite one of the pipe buffers with the
address of the physical page we want to read from/write
to. Then, we invoke a read/write operation on the pipe,
which results in reading/writing the contents of the tar-
get page to a supplied userspace buffer.
To execute this idea, we need to convert a linear map-

ping’s kernel virtual address to a struct page address.
To understand how this conversion is done, we need to

talk a bit about how physical memory is managed in the
kernel.

The kernel describes a single physical page us-
ing struct page. The mapping between PFNs to
struct page is one-to-one. However, architectures
might need to reserve some regions of memory from
use by the kernel. This is supported with Linux’s
SPARSEMEM memory model. On AArch64’s Linux with
CONFIG_SPARSEMEM_VMEMMAP enabled, when the kernel
boots, it designates a contiguous virtual memory area to
store an array of struct pages, one for each page of
physical memory that can be used by the kernel. This
area is called vmemmap.6
This is done so to make the conversion between pages

and virtual addresses fast. Given a virtual address in
the linear mapping x, we can calculate its corresponding
struct page address using:

struct page *virt_to_page(void *x) {
u64 index = ((u64)x - PAGE_OFFSET) / PAGE_SIZE;
u64 addr = VMEMMAP_START + index * sizeof(struct
page);

return (struct page *)addr;
}

PAGE_OFFSET is 0xffffff8000000000 on
AArch64 Linux ≥ v5.4, configured with 39-bit vir-
tual addresses [2]. VMEMMAP_START, defined in
arch/arm64/include/asm/memory.h, is the fixed vir-
tual address pointing to the start of the vmemmap.

5.8 Arbitrary R/W

We upgrade to arbitrary R/W on every kernel virtual ad-
dress by overwriting our task addr_limit and bypass
UAO (user access override).

Finding our task struct. To modify addr_limit, we
need to find our task struct pointer first. We will take the
naive approach of traversing the task’s list, starting from
init_task, located in the kernel image’s data section.

With the R/W primitive achieved so far, we can reli-
ably read and write to any address in the linear mapping,
which contains the kernel’s heap (and our task struct).
However, a read/write on kernel image’s address (e.g.
init_task) requires a conversion to the linear mapping.

This conversion can change per-device, depending on
whether the kernel image is physically randomized. On
Samsung devices tested, the virtual and physical kASLR
slides are equal. Since we know the virtual kASLR slide,
the conversion amounts to subtracting a constant. On

6The vmemmap virtually covers the reserved regions but does not
map them, so accessing the vmemmap on reserved regions will raise a
fault.

16

Google Pixel 6, there is no physical kASLR, so the con-
version becomes:

u64 kimg_to_lm(u64 x){
return PAGE_OFFSET + (x - kimg_base);

}

UAO. A brief introduction to UAO is in order. UAO
(User Access Override) is a feature introduced on
Armv8.2 that controls the behavior of unprivileged load-
/store instructions (ldtr*/sttr*). When those instruc-
tions are executed in EL1 (kernel mode), they behave as
if they were executed in EL0. This allows the kernel to
access userspace memory without temporarily disables
PAN (Privilege Access Never). Consequently, these in-
structions are used by the kernel user accessor functions
copy_[from|to]_user().

There are situations7 where the kernel uses
copy_[from|to]_user() with kernel buffer address
instead of user buffer address. To support this use-case,
the kernel cannot use the unprivileged load/store in-
structions (as access to a kernel address will generate
a fault). UAO provides a solution to this problem.
When UAO is enabled, the behavior of the unprivileged
load/store instructions is overriden, i.e. they behave
as normal load/store instructions (ldr*/str*). Hence,
when UAO is enabled, userspace accessor functions can
operate on kernel addresses but not on user addresses
since PAN is enabled. In Linux, UAO is enabled when the
task’s addr_limit is set to KERNEL_DS8, and is disabled
otherwise.

UAO bypass. To upgrade to full R/W primitives we
use the following strategy: Spawn two threads, T1 and
T2, and set T2’s addr_limit to KERNEL_DS using the
R/W primitives already obtained. T1 and T2 will have a
shared memory region and a pipe for read/write kernel
information. For a kernel_read(addr, size) opera-
tion, T2 will write the data from the kernel address addr
to the pipe buffer by executing write(pipe[1], addr,
size). This operation succeeds since UAO is enabled
for T2. T1 will read the contents of addr from the pipe
using normal read() syscall. A kernel_write(addr,
size) operation is implemented analogously. The
shared memory is used for synchronizing T1 and T2 and
passing messages without T2 having to make system
calls (as it can only provide kernel addresses for buffers).
Please refer to [6] and [8] for more information about the
UAO feature.

7For example, syscall emulation within the kernel (ker-
nel_setsockopt, kernel_recvmsg, etc).

8KERNEL_DS is used to represent the addr_limit of kernel threads.
Therefore, UAO can be seen as a security defense against invalid
userspace accesses in kernel threads.

5.9 Escalating Privileges

There are multiple techniques to execute code as the root
user and to disable/bypass SELinux and other mitiga-
tions. Generally, the techniques vary between vendors,
kernel versions, Android versions, etc.

On the Samsung Galaxy S22 and Google Pixel
6 devices the selinux_state structure con-
tains the enforce field (kernel is configured with
SECURITY_SELINUX_DEVELOP), so bypassing SELinux
on these devices amounts to override this field to 0.

To get root credentials on the Pixel 6, we override our
task_struct’s cred and real_cred fields with the cre-
dentials of the init process.

6 Results

We tested our exploit on the following 3 Android devices:

• Samsung Galaxy S22 with kernel version 5.10.81
running Android 12 with June 2022 Security patch
level.

• Google Pixel 6 with kernel version 5.10.66 running
Android 12 with May 2022 security patch level.
Also testedwith kernel version 5.10.107, Android 13,
September 2022 security patch level.

• Samsung Galaxy S21 Ultra with kernel version
5.4.129 running Android 12 with March 2022 secu-
rity patch. (Tested from rooted device only.)

We have not tested our technique on an Android de-
vice running kernel 4.19. However, manual code inspec-
tion suggests that it is possible to adapt the exploit to
such kernels as well.

Our testing shows that our exploit successfully exe-
cutes 4 out of 5 times. The main source of instability is a
failure to shape physical memory, which results in more
iterations of the vulnerability. Each vulnerability invo-
cation risk in a failed reallocation of the binder_proc
structure, which might lead to a kernel crash when the
spin_lock() function is called on random bits. We be-
lieve that the exploit can be fine-tuned to rectify these is-
sues and improve statistics. No further efforts were made
to improve stability.

Our implementation takes 5-60 seconds to complete,
depending on the number of iterations performed to suc-
ceed in shaping, and the number of dup2() steps taken.

7 Conclusion

This exploit shows that even a seemingly weak and con-
strained initial primitive can be used to completely com-

17

promise a system, despite all security mitigations de-
ployed.

8 References

[1] G. Beniamini. Issue 1404: Android: Hardware Ser-
vice Manager Arbitrary Service Replacement due to
getpidcon. URL https://bugs.chromium.org/p/
project-zero/issues/detail?id=1404.

[2] S. Capper. arm64: mm: Introduce 52-bit Kernel VAs
(b6d00d4), 2019.

[3] J. Horn. Racing against the clock – hitting a tiny ker-
nel race window, 3 2022. URL https://googlepr
ojectzero.blogspot.com/2022/03/racing-a
gainst-clock-hitting-tiny.html.

[4] X. Jin and R. Neal. The Art of Exploiting UAF by
Ret2bpf in Android Kernel. URL https://i.blac
khat.com/EU-21/Wednesday/EU-21-Jin-The-A
rt-of-Exploiting-UAF-by-Ret2bpf-in-And
roid-Kernel-wp.pdf.

[5] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Trans. Comput. Syst., 9(1):
21–65, feb 1991. ISSN 0734-2071. doi: 10.1145/10
3727.103729. URL https://doi.org/10.1145/10
3727.103729.

[6] V. Nikolenko. UAO (User Access Override) as a mit-
igation against addr_limit overwrites. URL https:
//duasynt.com/blog/android-uao-kernel-e
xpl-mitigation.

[7] M. Stone. Bad binder: Android in-the-Wild Exploit, .
URL https://googleprojectzero.blogspot.c
om/2019/11/bad-binder-android-in-wild-e
xploit.html.

[8] M. Stone. A Very Powerful Clipboard: Analysis of
a Samsung in-the-wild exploit chain, . URL https:
//googleprojectzero.blogspot.com/2022/11
/a-very-powerful-clipboard-samsung-in-t
he-wild-exploit-chain.html.

[9] J. Weiner. mm: memcg/slab: use a single set of
kmem_caches for all allocations (10befea9), 7 2020.

A Queued Spinlocks in Detail

Spinlock is a lock that busy waits (spins) if it is already-
acquired when trying to acquire it. The spinning ends
when the lock holder releases the lock. Since waiting

for the lock wastes CPU cycles, spinlocks are appropri-
ate when the critical section run for short periods of time.
They are also suitable for use in contexts that are not al-
lowed to sleep (e.g. IRQ handler, softirq, tasklet).

Perhaps the simplest implementation of spinlocks is
test-and-set (TAS). In this implementation, the lock is a
single bit, where 0 means that the lock is not acquired.
The lock is acquired using an atomic test-and-set instruc-
tion which writes 1 to the lock and returns its old value.
If the old value is 0, the lock was previously unlocked, so
this operation just acquired it. Otherwise, the old value
was 1, meaning the lock is held by another thread, so we
busy wait by repeatedly trying to acquire the lock until
it is released.

This approach has significant drawbacks. When there
aremultiplewaiters for the lock, only one of themwin ac-
quiring it. The others still wait. This can cause starvation
if a thread always loses. Further, each waiter spins as fast
as it can, each time invoking an expensive read-modify-
write instruction. On cache-coherent systems with mul-
tiple CPUs, this type of instructionsmight causemany re-
mote cache invalidations, which further degrades perfor-
mance. There exist spinlock implementations that rem-
edy these issues to some extent. We concentrate on one
such implementation called MCS (after the initials of its
inventors).

A.1 MCS Lock

MCS locks solves the starvation problem by ensuring that
a FIFO queue is maintained so every thread that wants to
acquire the lock will eventually acquire it. It solves the
caching issue by having each thread spins on a separate,
locally-accessible value.

In MCS lock, the lock is a pointer to a structure called
“MCS node”. This structure contains a next pointer to
form a linked list of MCS nodes, and a single bit called
locked. The lock pointer always points to the tail of the
queue. If it is NULL, the queue is empty and the lock is
unlocked.

When a thread wants to acquire the lock, it allocates
a new MCS node, n, and atomically places itself in the
end of the queue. If it is the first node in the queue (tail
pointer was NULL), then it just acquired the lock. Oth-
erwise, it sets n->locked to 1 and busy waits waiting
for n->locked to become 0. When a thread releases the
lock, it removes itself from the queue and “wakes-up” its
successor (if it exists) by setting the successor’s locked
value to 0.

Of course, to make this algorithm correct, we must en-
sure that certain operations are atomic (like insert/delete
from the queue), and to account for race conditions be-
tween different acquirers. Full treatment can be found in
the original paper [5, §2.4].

18

https://bugs.chromium.org/p/project-zero/issues/detail?id=1404
https://bugs.chromium.org/p/project-zero/issues/detail?id=1404
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://duasynt.com/blog/android-uao-kernel-expl-mitigation
https://duasynt.com/blog/android-uao-kernel-expl-mitigation
https://duasynt.com/blog/android-uao-kernel-expl-mitigation
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html

A.2 The Linux implementation

Spinlocks in the Linux kernel are implemented as (a form
of) MCS locking, and called “queued spinlock”. Tradi-
tionally, spinlocks in the kernel are 4-bytes wide, and en-
gineering effort was put to keep it this way (so the kernel
memory footprint would not increase).
The basic observation is that spinlocks disable preemp-

tion – the CPU cannot be preempted to run another pro-
cess while executing a critical section protected by spin-
lock (also the spin_lock() procedure itself is not pre-
emptible).9
For this reason, the length of the queue is upper

bounded by the number of CPUs in the system. This
makes the allocation of MCS nodes simple: they are stat-
ically allocated per-CPU. Note that static MCS node allo-
cation is subtle, since spinlocks are used in different con-
texts in the kernel. For example, consider a task in pro-
cess context that runs on CPU 0 and uses the MCS node
for CPU 0. If hardware interrupt is triggered on CPU 0
at the same time, the interrupt handler might also need
to use spinlock for race protection (different spinlock!
of course). Which MCS node will be used in this case?
Clearly it can’t be the same MCS node as the one used in
the process context. For this reason,multiple MCS nodes
are allocated for per-CPU. Currently, 4 MCS nodes are
statically allocated for each CPU. 4 nodes account for the
different contexts the kernel can be in: Process context,
softirqs, hardware interrupts and NMI. As a comment in
code states: “4 nodes are allocated based on the assump-
tion that there will not be nested NMIs taking spinlocks”.
If this is not the case, the code resorts to spin on the lock
value itself. So in this rare event, the spinlock is actually
reducing to a simple test-and-set lock.
Since MCS nodes are statically allocated, there is no

need to store the full pointer in the lock – it suffices to
store the CPU id ∈ [0, num_cpus − 1] and the context
index ∈ [0, 3]. This enables the developers to keep the
spinlock 4-bytes, which are broken into these subfields
(ordered from MSB to LSB):

tail (2 bytes): Stores a pair (cpu, index).

pending (1 byte): Stores the pending bit. (More on
this below.)

locked (1 byte): Non-zero if the lock is held by the
thread in the head of the queue.

9This is required to prevent high latency inside the critical section
(https://lwn.net/Articles/828616/): if the thread holding the lock got
preempted, it is possible for other threads to spin on the same lock,
wasting CPU cycles. In addition, disabling preemption has a desirable
side-effect of disabling task migration to another CPU on SMP systems.
For uniprocessor systems with preemptive kernels, there’s no need for
spinning at all as it suffices to just disable preemption.

The first optimization Linux makes is that the first
locker need not allocate any MCS node to tell other
threads it holds the lock. It simply communicates this in-
formation by setting the locked field to 1. This avoids
the cache-line miss associated with accessing the per-
CPU MCS nodes array.

When a second locker comes along, it sees that the
lock is held by examining the locked byte. According
to the MCS algorithm, it needs to allocate a node and
spin on it. Here Linux makes a second optimization: it
sets the pending field to 1 and spins until locked is set
to 0. When the first locker releases the lock, it sets the
locked field to 0, causing the second locker to stop spin-
ning, clear the pending bit and acquire the lock (by set-
ting locked to 1). This is called “optimistic spinning”,
hoping that the first lock holder will quickly release the
lock so the second locker will acquire it, avoiding enter-
ing a slow-path involvingMCS nodes (this also avoids the
cache-line miss associated with accessing the per-CPU
data). MCS nodes are used in situations where the lock is
seriously contended (at least two lockers in the queue).

B Triggering with Strong Binder

Reference

It is possible to trigger the vulnerability also by sending
a strong remote Binder reference (object of type HANDLE)
from process to . However, this involves an extra
race condition.

When a strong handle is translated,
binder_inc_node_nilocked() will execute the
following code:

static int binder_inc_node_nilocked(struct
binder_node *node, int strong,

int internal,
struct list_head *target_list)

{
struct binder_proc *proc = node->proc;

if (strong) {
if (internal) {

if (target_list == NULL && 1
node->internal_strong_refs == 0 && 2
!(node->proc &&

node == node->proc->context->
binder_context_mgr_node &&

node->has_strong_ref)) {
return -EINVAL; 3

}
node->internal_strong_refs++;

} else
node->local_strong_refs++;

...
} else {

....
}
return 0;

19

}

The strong argument is now set to 1, internal is
set to 1 as well and target_list is still NULL. We can
see that if strong and internal reference is taken (as in
our case), the function checks if target_list is NULL 1
and node->internal_strong_refs is 0 2 . (The code
also checks whether the node is not the context manager
node, which it isn’t, so no problems there.) target_list
is NULL in our flow, but node->internal_strong_refs
is not 0. Can we force it to be 0 somehow?
Recall that the node is owned by process . Process

obtained a strong reference to it, and process passes
this reference to the dying process .
Process obtained a strong reference to the node from

. An internal strong reference was taken at the time
sent strong nodes to. It turns out that has the power
to decrease the internal strong reference to 0. It can do
that by issuing the BC_RELEASE driver command, along
with the handle it has to ’s node. This command calls

binder_update_ref_for_handle(, /* proc */
HANDLE,
false, /* increment */
true); /* strong */

... which ends up calling

binder_dec_ref_olocked(ref, true /* strong */);

This function decreases ref->data.strong, and if it
becomes 0, a strong internal reference is dropped from
the node using binder_dec_node().
When sending a strong handle (object of type HADNLE),

the driver ensures that the sending process actually has
a strong reference on this handle. (Otherwise, an error
is generated saying “tried to use weak ref as strong ref”.)
For this reason, the decrement caused by BC_RELEASE
must happen after the handle value specified by is
mapped to a Binder reference during handle’s translation
in binder_translate_handle() (see § 3.3).
If the race is won, binder_inc_ref_for_node()will

insert a new binder_ref to the dying process but will
not be able to take a strong reference on the node, since
node->internal_strong_refs will be 0, so -EINVAL
error will be returned.

C Widen the Binder Vulnerability

Race Window

Ideally, wewould havewanted to includemany objects to
be translated before the faulty Binder reference is passed
as WEAK_HANDLE object. This would buy us time to close

process , and have binder_deferred_release()
completed, before the WEAK_HANDLE object is translated.
However, due to a limitation on the size of Binder

transactions (1MB), we cannot have unlimited number of
objects to translate. So, we need to choose them carefully.

We need to answer the following questions:

1. Which object(s) to use?

2. When to close process? What will be the deciding
moment?

For the first question, we use a single FDA object (fd
array). An FDA object is capable of submitting a vast
amount of objects (250,000), while minimizing the space
in the transaction needed to specify each fd. Further, this
object is particularly attractive as, starting with kernel
5.4, each fd translation results in (only) a fixup entry be-
ing allocated and initialized. With 250,000 fds, we de-
lay the race window in about 400ms, which is more than
enough to win.

For the second question, we exploit an implementation
detail in how transactions aremoved to the other process.
The implementation copies the transaction buffer to the
other process before the objects are translated. Therefore,
we can include a magic value at the start of the trans-
action buffer, and have process busy-loops until this
value is seen in its Binder memory map. As soon as it
observes this value, it immediately closes its Binder file
descriptor.

With this, we trigger the vulnerability 100% of the
times.

20

	Introduction
	Background
	Binder Overview
	Binder Device Lifecycle
	Binder Transactions
	Binder Objects and References
	Strong and Weak References
	Refcounting
	Death Notifications

	The Vulnerability
	Setup
	Creating a Reference in a Dying Process
	Causing Translation Error
	The use-after-free
	CVE-2022-20421

	The Primitive
	Spinlocks
	Queued Spinlocks
	Queued Spinlocks Implementation

	Extracting Primitives

	The Exploit
	Our Target Allocation
	Nullifying 2 LSBs of file pointer
	Exploit Strategy
	Shaping Physical Memory
	Closing the fd
	Leaking Pipe Buffer
	Arbitrary R/W to the Linear Mapping
	Arbitrary R/W
	Escalating Privileges

	Results
	Conclusion
	References
	Queued Spinlocks in Detail
	MCS Lock
	The Linux implementation

	Triggering with Strong Binder Reference
	Widen the Binder Vulnerability Race Window

