
1
©All rights reserved to JSOF Ltd.

Reverse Engineering
Archeology:

Multiple Devices, Multiple
Versions

CONFidence 2020- September 8th, 2020

©All rights reserved to JSOF Ltd.

Who are we?

2

JSOF is a software security consultancy

• Shlomi Oberman, co-founder, JSOF

• Moshe Kol, Security researcher, JSOF; Finder of Ripple20

• Ariel Schön, Security researcher, JSOF

©All rights reserved to JSOF Ltd.

Agenda

• Ripple20

• Reverse engineering process:

• Multiple binaries

• Wrap-up

4

©All rights reserved to JSOF Ltd.

Ripple20

5

• Series of 19 zero-day vulnerabilities in Treck TCP/IP*

• Amplified by the supply chain

• 100’s of millions of devices

• Medical, ICS, Home, Enterprise, Transportation, Utilities

©All rights reserved to JSOF Ltd.

Ripple20

6

CVE-2020-11896

CVE-2020-11897

CVE-2020-11898

CVE-2020-11899

CVE-2020-11900

CVE-2020-11901

CVE-2020-11902

CVE-2020-11903

CVE-2020-11904

CVE-2020-11905

CVE-2020-11906

CVE-2020-11907

CVE-2020-11908

CVE-2020-11909

CVE-2020-11910

CVE-2020-11911

CVE-2020-11912

CVE-2020-11913

CVE-2020-11914

• 4 critical remote code execution vulnerabilities

©All rights reserved to JSOF Ltd.

100’s of Millions of Devices Affected

7

 And many more...

©All rights reserved to JSOF Ltd.

Ripple20 Research

8

• Reverse engineering 7 different devices with multiple versions

• Every device has a different configuration

• Ongoing research Sep’19 - Jun’20 (9 months)

• Some strange architectures and firmwares involved

2 whitepapers released (CVE-2020-11896/CVE-2020-11901)

©All rights reserved to JSOF Ltd.

Challenge

• 1 library many versions

• Little did we know…

• Need symbols, debug, binary…

• Multiple data points

• Lots of history

9

©All rights reserved to JSOF Ltd.

Challenge

• Multiple firmwares/binaries

• Security/Archeology project

• Library dating to pre-2000

10

©All rights reserved to JSOF Ltd.

How did we start?

• Browsing to Treck’s website

• Looking for datasheets, manuals, demos

11

12
©All rights reserved to JSOF Ltd.

Binary #1 – Freescale
demo

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• Contains headers and static library

• The headers provide useful comments and structure definitions.

13

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• Static library contains 202 object files:

tr8023.o
trarp.o
trarpchk.o
trautoip.o
trbase64.o
trbootp.o
trbtdhcp.o
trbuffer.o
trcmplib.o
trdevice.o

trdhcp.o
trdialer.o
trdsplib.o
treap.o
trethcom.o
trether.o
trethtag.o
trfs.o
trftp.o
trftpd.o

trhttp.o
trhttpd.o
tricmp.o
trigmp.o
trindrmc.o
trindrv.o
trinscdr.o
trip.o
tripfrag.o
triphc.o

triptunl.o
trlist.o
trlock.o
trlog.o
trloop.o
trlqm.o
trmime.o
trmoblip.o
trmschap.o
trnat.o

trnetid.o
trntstat.o
trping.o
trpop3.o
trppp.o
trramfs.o
trrelay.o
trresolv.o
trrip.o
trromfs.o

…

• Architecture: Motorola 68030 big-endian

14

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• Object files have function names:

trip.o 15

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• But non-local function calls are missing:

16

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• Some can be recovered using the relocation table:

17

©All rights reserved to JSOF Ltd.

Freescale 5280 demo

• In summary:

• Useful data point

• Cannot be debugged easily

18

19
©All rights reserved to JSOF Ltd.

Binary #2 – Win32 demo

©All rights reserved to JSOF Ltd.

Win32 Demo

• Treck (used to)
offer Windows
32-bit demo app

20

©All rights reserved to JSOF Ltd.

Win32 Demo

• Supports many
useful features:

• IPv4

• IPv6

• DHCP client

• TCP

• UDP

• ICMP

• IPSEC

• Mobile IPv6

21

©All rights reserved to JSOF Ltd.

Win32 Demo: Finding Treck

• No debug symbols.

• Able to recover some function names using debug strings:

• Applies mostly to IPv6 functions 

22

©All rights reserved to JSOF Ltd.

Win32 Demo: Finding Treck

• To locate the IPv4 code base, we searched for EtherType constants in
the binary.

• Recall Ethernet packet format:

EtherType Protocol

0x0800 IPv4

0x0806 ARP

0x86dd IPv6
23

©All rights reserved to JSOF Ltd.

Win32 Demo: Finding Treck

• Using this technique we were able to locate tfEtherRecv.

x86 is little-endian
architecture!

24

©All rights reserved to JSOF Ltd.

Win32 Demo: Results

• We reverse engineered large parts of the network stack

• We found some vulnerabilities

• We wanted to test if other devices are affected

25

26
©All rights reserved to JSOF Ltd.

Binary #3 - Digi dev board

©All rights reserved to JSOF Ltd.

Digi Connect ME 9210

• A “Veteran of the Digi Community” mentioned online that Digi
Connect ships with Treck TCP/IP stack in Digi forum:

27

©All rights reserved to JSOF Ltd.

Digi Connect ME 9210

• Digi Connect ME devices come in two
flavors:

• Running embedded Linux

• Running proprietary NET+OS

• The network stack of NET+OS 7.5 is Treck
TCP/IP.

• We bought the Connect ME 9210
development kit.

28

©All rights reserved to JSOF Ltd.

Digi Connect ME 9210

• Runs Digi's new 32-bit NS9210 processor (ARM9).

• Have debugging capabilities using JTAG.

• Comes with eclipse-based IDE to write software:

29

©All rights reserved to JSOF Ltd.

Digi Connect ME 9210

• We compiled some basic example and examined the resulting ELF file.

• ELF comes with debug symbols!

• We developed an exploit for CVE-2020-11896 on this device.

• Disadvantage: relatively old Treck version (4.7).

30

31
©All rights reserved to JSOF Ltd.

Binary #4 – Intel AMT

©All rights reserved to JSOF Ltd.

Intel ME

• In a quest for newer versions, we looked at Intel ME.

• Treck powers the AMT module.

• We speculated that since Intel is a security-aware
company, they must have updated their Treck software.

32

©All rights reserved to JSOF Ltd.

We thought we had 1-days

• Intel binary had some “defensive programming”

• We thought we had 1-days that still existed in the
wild (we were mostly wrong)

• Maybe fixes, maybe ifdef, maybe they are paranoid

33

©All rights reserved to JSOF Ltd.

Intel ME: Patch-diffing

• INTEL-SA-00241 describes a vulnerability that looks related:

• We wanted to patch-diff AMT versions to find it.

34

©All rights reserved to JSOF Ltd.

Intel ME: Patch-diffing

• We obtained two ME firmware versions:

• Intel ME 12.0.32.1421 Corporate/5MB

• Intel ME 12.0.55.1521 Corporate/5MB

• Used the ME Analyzer tool to unpack the firmware and extract the
AMT module.

35

©All rights reserved to JSOF Ltd.

Intel ME: Patch-diffing

• We used BinDiff as our patch-diffing tool.

• Challenge:

• diff is large.

• We want to focus on Treck-related code only.

36

©All rights reserved to JSOF Ltd.

Intel ME: Finding Treck

• tfUseEthernet initializes the Ethernet link layer.

Two references
for the string
“ETHDIX”.

Initializes a struct
with function
pointers –
tfEtherRecv
among them.

*Decompiled code taken from
the Digi Connect device

37

©All rights reserved to JSOF Ltd.

Intel ME: Finding Treck

• We signed the tfUseEthernet function structure.

• Using the “ETHDIX” string we found the image base address.

• We developed a Ghidra script to mark Treck-related code, then
extracted Ghidra symbols to IDA for diffing.

38

©All rights reserved to JSOF Ltd.

Marking Treck-related code

• Traverse call-graph from known-
Treck entry points.

• Function pointers in
tfUseEthernet as entry points.

• Luckily, library functions reside in
separate module(s).

• To gain more coverage we
considered parents of functions
with many xrefs (e.g. tfLock).

tfEtherRecv

tfFreePacket

tfFreeSharedBuf
fer

tfArpIncomingPa
cket

tfFreePacket

tfArpResolveSea
rch

tfLock

…

tfIpIncomingPac
ket

…

tf6IpIncomingPa
cket

…

39

©All rights reserved to JSOF Ltd.

Intel ME: A vulnerability

• A fixed bug was found in the DHCPv6 client:

• During option 24 processing in tf6DhcpSaveReplyInfo.

• Function accepts single argument (buff) and computes the total
label length.

• Matches the description of CVE-2019-0131 shown earlier:
• Adjacent access

• Infoleak/DoS

40

©All rights reserved to JSOF Ltd.

Intel ME: A vulnerability

• We also found that Treck got the fix wrong:

• Still OOB access.

• We reported the issue to Treck. This is CVE-2020-11905.

41

©All rights reserved to JSOF Ltd.

1 days, 0 days, Any-days

• Some of the vulnerabilities fixed only in Intel. Also, Intel has exploit
mitigations.

• Digi had old code; Intel had new code. Intel had some code (no DNS)

• Until disclosure, we thought some bugs were 1-days and Intel was
most updated.

• Treck told us they are 0-days. The story of AMT is unclear.

42

©All rights reserved to JSOF Ltd.

1 days, 0 days, Any-days

• Few types of Treck supply-chain vulnerabilities:

• True 0-days

• 0-days only fixed in AMT code (to our knowledge)

• N-days that exist in the wild and fixed upstream - Any-days
• Never publicly reported as far as we know

• We don’t know if considered security fix previously

• Support package  updates

• No support  no security

43

44
©All rights reserved to JSOF Ltd.

Binary #5 – HP printer

©All rights reserved to JSOF Ltd.

HP OfficeJet Pro 8720

• Searching for some common Treck
function names on Google yields
interesting results.

• We found that some HP printers run Treck.

• We wanted to check if they are affected by
the vulnerabilities.

45

©All rights reserved to JSOF Ltd.

HP firmware unpacking

• RFU (remote firmware update) file
obtained from HP’s public FTP server.

• Multi–stage unpacking.

• Bizarre file formats.

• Whole process is described in our
blog.

Unpacking PJL/PCL
layer

Unpacking binary S-
Records layer

Removing Flash OOB
data

Locating firmware
section table

Dump decompressed
section

46

©All rights reserved to JSOF Ltd.

HP OfficeJet Pro 8720: A crash

• We found that CVE-2020-11896 crashes the printer.

• Apparently, there is an ifdef that disallows fragmented data over an
IP-in-IP tunnel.

• However, sending those packets cause tfKernelError to run.

• Vulnerability variant.

Crash!

47

48
©All rights reserved to JSOF Ltd.

Binary #6 – APC UPS

©All rights reserved to JSOF Ltd.

Schneider Electric APC UPS

• Downloaded firmware update files from APC
website.

• Not encrypted/compressed.

• Reverse engineered some parts of the file
format:

• Image base address

• CRC16 fields

49

©All rights reserved to JSOF Ltd.

The AOS binary

Header crc file crc

Image
base

Image
base +
0x400

File
size

0x400

50

©All rights reserved to JSOF Ltd.

The AOS binary: Which processor?

• Loaded into Ghidra.

• Choosing 16-bit x86 protected mode “kind of” works.

• Disassembler cannot resolve far-calls.

• Obscure architecture.

51

©All rights reserved to JSOF Ltd.

The AOS binary: Which processor?

• Strange memory addressing.

• Can’t be protected mode - too many segments, no GDT.

• Can’t be real mode - shifting by 4 does not work.

• We opened the old books to find olden x86 witchcraft – no luck.

• Do you have a moment to learn about unreal mode?

 52

©All rights reserved to JSOF Ltd.

The AOS binary: Which processor?

• A pattern emerges when looking at the
strings/function calls (but mostly
strings).

• LSB of a pushed string corresponds to
LSB of the offset of the string within the
binary.

• Shifting the segment word by 8 does the
trick. We saw that we always land on a
function this way. LinearAddress = (segment << 8) + offset

push cs
push 0xf2e
push cs
push 0xf1b
call 0xc466:0x382 tfKernelError

53

©All rights reserved to JSOF Ltd.

The AOS binary: Loading into RE tool

• We must fix the far-call issue to reverse engineer the firmware.

• We tried to change Ghidra’s processor module, recompile it.

• Only partial success, no strings.

• We tried to specify the segment granularity on radare2 – better, still
lacks strings.

54

©All rights reserved to JSOF Ltd.

The AOS binary: Loading into RE tool

• We found someone who faced the same issue on
http://www.openrce.org/forums/posts/753.

• Mystery solved: Turbo186!

• Solution: use IDA’s segment
selectors.

• Thanks igor skochinsky.

55

http://www.openrce.org/forums/posts/753
http://www.openrce.org/forums/posts/753

©All rights reserved to JSOF Ltd.

The AOS binary: Loading into IDA

• We wrote an IDA python script to create segment selectors which
emulate the “shifting by 8”.

• Now we have strings, switch statements, far-calls working.

• We can start reverse engineering.

• No decompiler for 16-bit x86.

56

©All rights reserved to JSOF Ltd.

The AOS binary: Heap Functions

57

• Even after segment fixing, many far-calls point to non-mapped regions

• Comparing with Digi firmware, we concluded these are far-calls to heap
utility functions

• malloc(), free(), etc.

• The binary contains debug strings with the function names

• But without references…

• Because of the 8-bit segment shift, we can search for undefined push
instructions

• Found and re-mapped these functions to their proper dynamic location

©All rights reserved to JSOF Ltd.

New Vulnerability

• Found newer Treck version than Digi’s.

• Also new vulnerability (CVE-2020-11901: Bad RDLENGTH).

• Bad fix for a previously found vulnerability.

• Didn’t exist in AMT because they don’t use this feature.

58

59
©All rights reserved to JSOF Ltd.

Binary #7 – GE MDS

©All rights reserved to JSOF Ltd.

Bonus Binary: GE MDS

• General Electric communication device for utilities (water/power).

• Used Google search + n-gram slices to find the architecture

• cpu_rec works too!

• Runs Blackfin processor and uses Treck.

• Didn’t use extensively, didn’t teach us anything new.

60

61
©All rights reserved to JSOF Ltd.

Wrap-up

©All rights reserved to JSOF Ltd.

Take-aways

• Supply chain is complicated

• Obscurity doesn’t work

• Well, mostly.

• Know your upstream, patch your upstream

• Deeper in the supply-chain  higher impact

62

©All rights reserved to JSOF Ltd.

Take-aways

• Software providers security SLA

• Report security issues?

• Timeline?

• Product support vs security support?

• Two way? What if user finds a vulnerability?

• Proprietary vs. OSS?

63

©All rights reserved to JSOF Ltd.

Inconsistent patching

• One vendor patches and another doesn’t.

• Patch-gapping on steroids!

64

©All rights reserved to JSOF Ltd.

Conclusions

• Complex reverse engineering process

• Forks in software library can unveil more vulnerabilities

• Supply chain makes security difficult

• Proprietary update process is obscure

65

66
©All rights reserved to JSOF Ltd.

Thanks for listening!
info@jsof-tech.com

