
Device Tracking via Linux’s New TCP
Source Port Selection Algorithm*

Moshe Kol, Amit Klein, Yossi Gilad
Hebrew University of Jerusalem

DANSS 2022-2023

* Accepted to USENIX Security 2023

Web-based User Tracking

● Web-based user (device) tracking is used for various purposes:

2

✗ Real-time targeted marketing

✗ Surveillance purposes

✓ Fraud detection

✓ Campaign measurement

✓ Protection against account hijacking

Data mining
Anti-bot services
Enterprise security management
Limiting number of accesses to services

Third-Party Cookies

● Set by third-party content (Ads, Social media, etc.)

● Traditionally (ab)used for cross-site tracking

● Slowly dying
○ Unsuitable for cross-browser tracking
○ Users can delete them
○ Under regulation (GDPR, CCPA)
○ Browser support is phased-out

3

⇒ Trackers are now looking
for new tracking technologies

Our Work

● Our work: Uses TCP source ports for user tracking

● Entry point: A tracking snippet (JavaScript)

● The snippet runs on the user browser, executes the
tracking logic and obtains a device ID

4

Our Work

TCP source ports are not exposed via JavaScript ⇒ tracking server is used:

● The tracking snippet forces the user device to establish TCP connections

● The tracking server analyzes source port measurements for the device ID

5

Tracking
Server

tcp_connect(server, port)

tcp_connect(X, p)

tcp_connect(server, port)

tracking_snippet.js

TCP-SYN

TCP-SYN

TCP-SYN (Unobserved) Tracking
Logic

Source
Ports

Device
ID

.

.

.

TCP Source Port Selection

● TCP connections are identified by the 4-tuple:

(src_ip, src_port, dst_ip, dst_port)

6

● OS chooses src_port (“Ephemeral Port”)

● Client provides (dst_ip, dst_port) at connect()
○ src_ip is automatically set by the OS

Source Port Selection
Algorithm

src_ip dst_ip dst_port

src_port

state

TCP Source Port Selection

● Source ports should be unpredictable and
infrequently reused

● RFC 6056 defines 5 port selection algorithms

● Linux moved to the Double-Hash Port Selection
(DHPS) Algorithm starting from kernel 5.12

Source Port Selection
Algorithm

src_ip dst_ip dst_port

state

src_port

7

RFC 6056, Algorithm 4: Double-Hash Port Selection (DHPS)

● Algorithm state:
○ table: Table of 32-bit integers of length T (initialized randomly at boot time)
○ K₁, K₂: Two 128-bit keys (initialized randomly at boot time)
○ F, G: Two cryptographic keyed hash functions

● To select src_port for a given 3-tuple (src_ip, dst_ip, dst_port):
○ Compute offset = F(K₁, src_ip, dst_ip, dst_port) ∈ [0, 2³²−1]

○ Compute index = G(K₂, src_ip, dst_ip, dst_port) ∈ [0, T−1]

○ Compute port = min_ephemeral + (table[index] + offset) % num_ephemeral
○ Increment table[index] by 1

8

RFC 6056, Algorithm 4: Security Issues

● Issue #1: Shared global state
○ Across network interfaces, protocols and network namespaces

● Issue #2: Small table length
○ RFC 6056 suggests T = 10; Linux uses T = 256

● Issue #3: Deterministic change of state
○ Table cells are incremented by 1

9

Device Tracking based on DHPS

● Algorithm state is shared between Internet-facing and loopback interfaces

● Loopback has a fixed IP address: 127.0.0.1

10

TCP-Connect(“127.0.0.1”, x)

⇒ index = G(K₂, “127.0.0.1”, “127.0.0.1”, x)

Device Tracking based on DHPS

● The idea: Collect hash collisions of loopback traffic

i.e. Pairs (x, y) such that

G(K₂, “127.0.0.1”, “127.0.0.1”, x) = G(K₂, “127.0.0.1”, “127.0.0.1”, y)

● The pairs {(xᵢ, yᵢ)} are network independent (depend only on K₂)

⇒ {(xᵢ, yᵢ)} form a device ID.

● Device ID persists across browsers, network switches, etc.
○ Lasts as long as K₂ persists (until reboot, in Linux)

11

Device Tracking based on DHPS

● Challenge: No access to source port information from JavaScript
○ Also, no access to the algorithm state (table, K₁, K₂)

● We can only observe the source ports directed to the attacker server

● We will find loopback collisions indirectly

12

(attacker_ip, p)

(“127.0.0.1”, L₁) (“127.0.0.1”, L₂)

Collides with Collides with

Collides with

How?

Device Tracking based on DHPS: The Primitive

The user’s device is forced (via JS) to establish 3 TCP connections:

13

TCP-Connect(attacker_ip, attacker_port)

TCP-Connect(dst_ip, dst_port)

TCP-Connect(attacker_ip, attacker_port)

Attacker computes the source port difference Δ = s₁ - s₀.

If there was a collision then Δ = 2 (the table cell was incremented twice).

Otherwise, Δ = 1.

User Browser Tracking Server
TCP-SYN

TCP-SYN

TCP-SYN
Extract source port s₀

Extract source port s₁

(Unobserved)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 1: Collect T attacker destinations that uniquely cover all table cells

14

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 1: Collect T attacker destinations that uniquely cover all table cells

The attacker doesn’t know the mapping, only that it exists.

15

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

16

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)Fingerprint:

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

17

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)

Fingerprint:

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

18

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)

Fingerprint:

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

19

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)
(“127.0.0.1”, 1027)

Fingerprint:
(1024, 1027)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

20

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)
(“127.0.0.1”, 1027)
(“127.0.0.1”, 1028)

Fingerprint:
(1024, 1027)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

21

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)
(“127.0.0.1”, 1027)
(“127.0.0.1”, 1028)
(“127.0.0.1”, 1029)

Fingerprint:
(1024, 1027)
(1026, 1029)

Device Tracking based on DHPS: The Plan

Our attack works in 2 phases:

● Phase 2: Collect loopback hash collisions

22

table[0]
table[1]
table[2]
table[3]
table[4]
table[5]
table[6]
table[7]
table[8]
table[9]

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)
(attacker_ip, p7)
(attacker_ip, p8)
(attacker_ip, p9)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)
(“127.0.0.1”, 1027)
(“127.0.0.1”, 1028)
(“127.0.0.1”, 1029)
...

Fingerprint:
(1024, 1027)
(1026, 1029)

Device Tracking based on DHPS: Phase 1

● The Goal: Obtain T attacker destinations that uniquely cover every table cell

23

● The algorithm is iterative:
○ U ≔ set of unique attacker destinations
○ We begin with U=∅
○ Expand U at every iteration, until |U|=T (every table cell is covered)

Device Tracking based on DHPS: Phase 1

● On each iteration: Extend U with more unique attacker destinations.

○ Let S be a fresh set of T random attacker destinations.*

○ Force the user browser to execute (in-order):

TCP-Connect(S)

TCP-Connect(U)

TCP-Connect(S)

○ Update U with all a∈S such that Δₐ==1.

24* T maximizes the expected number of new unique attacker destinations.

S: a₀ a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

Δ: 2 3 1 1 2 2 1 3 2

Device Tracking based on DHPS: Phase 2

● The Goal: Collect loopback collisions

● We do this indirectly:
○ We first map loopback destinations to attacker destinations
○ Then, we infer loopback collisions from the mapping

25

(attacker_ip, p0)
(attacker_ip, p1)
(attacker_ip, p2)
(attacker_ip, p3)
(attacker_ip, p4)
(attacker_ip, p5)
(attacker_ip, p6)

(“127.0.0.1”, 1024)
(“127.0.0.1”, 1025)
(“127.0.0.1”, 1026)
(“127.0.0.1”, 1027)
(“127.0.0.1”, 1028)
(“127.0.0.1”, 1029)
...

Fingerprint:
(1024, 1027)
(1026, 1029)
...

Device Tracking based on DHPS: Phase 2

● On each iteration ℓ:

Find the attacker destination that collides with (“127.0.0.1”, ℓ+1024):

TCP-Connect(U)

TCP-Connect(“127.0.0.1”, ℓ+1024)

TCP-Connect(U)

⇒ Look for a∈U s.t. Δₐ > 1.

26

● We stop when “enough” loopback collisions were collected
We guarantee that: N: population size

D, D’: random devices

U: u₀ u₁ u₂ u₃ u₄ u₅ u₆ u₇ u₈

Δ: 1 1 1 2 1 1 1 1 1

Device Tracking based on DHPS: Improvements

● Grouping loopbacks: Test α loopbacks instead of one, in phase 2.

27

TCP-Connect(U)

TCP-Connect(“127.0.0.1”, 1024)×2⁰

TCP-Connect(“127.0.0.1”, 1025)×2¹

TCP-Connect(“127.0.0.1”, 1026)×2²

TCP-Connect(“127.0.0.1”, 1027)×2³

TCP-Connect(U)

Phase 2 (α=4)

Device Tracking based on DHPS: Improvements

● Robustify against organic noise: Tolerate up to β noise.

28

Note: Phase 1 already
tolerates noise

TCP-Connect(U)

TCP-Connect(“127.0.0.1”, 1024)×2⁰×β

TCP-Connect(“127.0.0.1”, 1025)×2¹×β

TCP-Connect(“127.0.0.1”, 1026)×2²×β

TCP-Connect(“127.0.0.1”, 1027)×2³×β

TCP-Connect(U)

Phase 2 (α=4)

Device Tracking based on DHPS: Limitations

● Our technique relies on observing the machine-generated source ports

● Cannot track proxy (Tor) users

● Cannot track under networks with port-rewriting NATs

29

DHPS Implementation in Linux

● DHPS is implemented in __inet_hash_connect()
○ Used by both IPv4 and IPv6 code

● Table is global and its size is 256

● SipHash with 128-bit key for F, G

● Noise Injection: Increment a table cell twice with probability 1/16

30

Evaluation: Setup

● Prototype tracking server in Go and
tracking snippet in HTML+JavaScript

● 2 tracking servers in different locations

● Multiple Linux laptops and PCs

31

Internet

eu-south-1

us-west-2

Evaluation: Results

✓ Cross browser tracking
○ Tested Chrome v96.0 and Firefox v96

32

Evaluation: Results

✓ Cross browser tracking
✓ Cross browser privacy modes tracking

33

Evaluation: Results

✓ Cross browser tracking
✓ Cross browser privacy modes tracking
✓ Dwell time: 5-15s on Chrome

34

Evaluation: Results

✓ Cross browser tracking
✓ Cross browser privacy modes tracking
✓ Dwell time: 5-15s on Chrome
✓ Cross network tracking

○ Consistency under IPv4 or IPv6
○ Works on some VPNs: TunnelBear and ExpressVPN

35

Evaluation: Results

✓ Cross browser tracking
✓ Cross browser privacy modes tracking
✓ Dwell time: 5-15s on Chrome
✓ Cross network tracking
✓ Android

○ Tested Samsung Galaxy S21 with patched kernel
○ Dwell time: 18-21s on Chrome mobile

36

Demo

37Full source code: https://github.com/0xkol/rfc6056-device-tracker

http://www.youtube.com/watch?v=pZbfV5nCQsA
https://github.com/0xkol/rfc6056-device-tracker

Vendor Status

● February 2022: Linux kernel security team was informed

● Assigned CVE-2022-32296

● Worked with the security team to patch the vulnerability

● May 2022: A patch was merged into the Linux kernel

38

Countermeasures

39

Countermeasure Original
Implementation

New
Implementation

Effect

Increase table size T=256 T=64K Collisions become less
frequent

Countermeasures

40

Countermeasure Original
Implementation

New
Implementation

Effect

Increase table size T=256 T=64K Collisions become less
frequent

Periodic re-keying Every reboot Every 10s Collisions become
useless after re-keying

Countermeasures

41

Countermeasure Original
Implementation

New
Implementation

Effect

Increase table size T=256 T=64K Collisions become less
frequent

Periodic re-keying Every reboot Every 10s Collisions become
useless after re-keying

More noise ~Bernoulli(1/16) ~𝒰{0,7} Collisions become
harder to determine

Conclusion

● DHPS (Algorithm 4 of RFC 6056) is vulnerable to device tracking

● Demonstrated our technique on Linux

● The device ID persist across browsers, browser privacy modes, networks, etc.

● Shows that user privacy can be undermined in non-obvious ways

42

Thanks for Listening!
Questions?

43

Extended paper: https://arxiv.org/pdf/2209.12993.pdf
Source code: https://github.com/0xkol/rfc6056-device-tracker
Demo video: https://www.youtube.com/watch?v=pZbfV5nCQsA

https://arxiv.org/pdf/2209.12993.pdf
https://github.com/0xkol/rfc6056-device-tracker
https://www.youtube.com/watch?v=pZbfV5nCQsA

