
 NAME:WRECK | RESEARCH REPORT

Breaking and fixing DNS implementations

Forescout Research Labs
Daniel dos Santos
Stanislav Dashevskyi
Amine Amri
Jos Wetzels

JSOF
Shlomi Oberman
Moshe Kol

Published by Forescout Research Labs & JSOF

RESEARCH REPORT | NAME:WRECK

FORESCOUT RESEARCH LABS

Contents

1. Executive Summary

2. Main Findings

 2.1. Analyzed stacks and new vulnerabilities

3. Exploitation

 3.1. About DNS message parsing

 3.2. Technical details

4. An attack scenario leveraging NAME:WRECK

5. The impact of NAME:WRECK

6. It’s You Again: Recurrent Anti-Patterns

 6.1. AP#1 – Lack of TXID validation, insufficiently random TXID and source UDP port

 6.2. AP#2 – Lack of domain name character validation

 6.3. AP#3 – Lack of label and name lengths validation

 6.4. AP#4 – Lack of NULL-termination validation

 6.5. AP#5 – Lack of the record count fields validation

 6.6. AP#6 – Lack of domain name compression pointer and offset validation

7. Mitigation Recommendations

8. Conclusions and Final Remarks

3

5

6

11

12

12

16

17

21

21

21

22

22

22

22

24

26

FORESCOUT RESEARCH LABS 3

1. Executive summary

• In the third study of Project Memoria – NAME:WRECK
– Forescout Research Labs and JSOF Research Labs
joined forces to understand underlying problems related
to Domain Name System (DNS) implementations, to dis-
close a set of 9 vulnerabilities affecting 4 popular TCP/
IP stacks and to propose solutions for the community.

• The new vulnerabilities appear in well-known IT soft-
ware (FreeBSD) and in popular IoT/OT firmware, such
as Siemens’ Nucleus NET. FreeBSD is widely known to
be used for high-performance servers in millions of IT
networks, including major websites such as Netflix and
Yahoo. FreeBSD is also the basis for other well-known
open-source projects. Nucleus NET has been used for
decades in several critical OT and IoT devices.

• Not all devices running Nucleus RTOS or FreeBSD are vul-
nerable to NAME:WRECK. However, if we conservatively
assume that 1% of the more than 10 billion deployments
are vulnerable, we can estimate that at least 100 million
devices are impacted by NAME:WRECK.

• The new vulnerabilities allow for either Denial of Service
or Remote Code Execution. The widespread deployment
and often external exposure of vulnerable DNS clients
leads to a dramatically increased attack surface.

• NAME:WRECK illustrates the security cost of RFC com-
plexity. We analyzed the implementation of DNS message
compression in 7 new TCP/IP stacks and found that
50% of them are vulnerable. This is in addition to similar
vulnerabilities in previous research (one in Ripple20 and
two in AMNESIA:33) and other major vulnerabilities
affecting DNS servers (SIGRed, DNSpooq, and several
others disclosed over the years).

• General recommended mitigations for NAME:WRECK
include limiting the network exposure of critical vul-
nerable devices via network segmentation, relying on
internal DNS servers and patching devices whenever
vendors release advisories.

• Of particular interest is that to exploit NAME:WRECK
vulnerabilities, an attacker should adopt a similar
procedure for any TCP/IP stack. This means that the
same detection technique used to identify exploitation
of NAME:WRECK also will work to detect exploitation
on other TCP/IP stacks and products that we could not
yet analyze.

• As part of the NAME:WRECK disclosure, Forescout
Research Labs shares with the cybersecurity commu-
nity the following artifacts:

• This report, in which we discuss six DNS anti-pat-
terns (implementation problems common in dif-
ferent TCP/IP stacks) and provide researchers
and developers around the world with tools and
knowledge enabling them to tackle the issue in
other stacks.

• An updated open-source script to identify possible
vulnerable devices on a network.

• A library of open-source Joern queries to be used
by researchers and software developers to (partially)

automate the finding of DNS-related vulnerabilities.

• Samples of malicious traffic captures (available
upon request) to be used by researchers and secu-
rity analysists to test their intrusion detection sys-
tems.

• A draft of an informational RFC discussing the
identified anti-patterns to guide developers in avoid-
ing making the same mistakes while writing future
DNS implementations.

• This research is further proof that DNS protocol com-
plexity leads to several vulnerable implementations and
that the community should act to fix a problem that we
believe is more widespread of what we currently know.

RESEARCH REPORT | NAME:WRECK | Executive summary

https://www.jsof-tech.com/disclosures/ripple20/
https://www.forescout.com/research-labs/amnesia33/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://www.jsof-tech.com/disclosures/dnspooq/
https://github.com/Forescout/project-memoria-detector
https://github.com/Forescout/namewreck
https://github.com/Forescout/namewreck

FORESCOUT RESEARCH LABS 4

A Recap on TCP/IP stacks and Project

Memoria

A TCP/IP stack is a piece of software that implements basic
network communication for all IP-connected devices, includ-
ing Internet of Things (IoT), operational technology (OT) and
information technology (IT). Not only are TCP/IP stacks wide-
spread; they also are notoriously vulnerable due to (i) codebases
created decades ago and (ii) an attractive attack surface,
including protocols that cross network perimeters and lots of
unauthenticated functionality.

Noticing the impact of these foundational components,
Forescout Research Labs has launched Project Memoria
with the goal of collaborating with industry peers and research
institutes to provide the cybersecurity community with the
largest study on the security of TCP/IP stacks.

The latest examples of TCP/IP stack vulnerabilities include:

INFORMATIONAL

• Ripple20, a set of 19 vulnerabilities on the Treck TCP/IP
stack released by JSOF in June 2020. Forescout Research
Labs worked in close collaboration with JSOF to identify
vendors and devices potentially affected by Ripple20.

• AMNESIA:33, a set of 33 vulnerabilities affecting 4 open-
source TCP/IP stacks released in December 2020 by
Forescout Research Labs.

• NUMBER:JACK, a set of 9 vulnerabilities affecting the Initial
Sequence Number (ISN) implementation in 9 TCP/IP stacks
disclosed in February 2021 by Forescout Research Labs.

• NAME:WRECK, discussed in this report, a set of 9 vulnera-
bilities affecting DNS clients of 4 TCP/IP stacks disclosed
by Forescout Research Labs and JSOF. The vulnerabilities
included in NAME:WRECK range in potential impact from
Denial of Service to Remote Code Execution.

RESEARCH REPORT | NAME:WRECK | Executive summary

A note on the title of this report

“NAME:WRECK” refers to how the parsing of domain names
can break – “wreck” – DNS implementations in TCP/IP stacks,
leading to denial of service or remote code execution. However,
this research focuses not only on the “breaking” part, but also

on “fixing” these types of issues by finding and patching similar
vulnerabilities in other stacks as well as avoiding the identified
anti-patterns in future implementations.

https://www.jsof-tech.com/disclosures/ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/research-labs/amnesia33/
https://forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://www.forescout.com/research-labs/namewreck/

FORESCOUT RESEARCH LABS 5

2. Main Findings

Domain names are character strings that identify assets on
the internet. The Domain Name System (DNS), informally
known as the “phonebook of the internet,” is a decentralized
system and protocol created by Paul Mockapetris in 1983
that allows a requesting device to resolve desired domain
names (such as “google.com”) to specific IP addresses
(such as “172.217.6.78”) by querying a hierarchy of servers
(such as Google’s Public DNS).

Recently, there have been major vulnerabilities on DNS
implementations that raised attention to this protocol as
an important attack vector, such as SIGRed (CVE-2020-
1350) allowing attackers to take over machines running
the Windows DNS server and SAD DNS (CVE-2020-25705),
which revived the DNS cache poisoning attack that can
redirect millions of devices to attacker-controlled domains.
The most recent example of major vulnerability on a DNS
implementation is DNSpooq, a set of 7 critical CVEs affect-
ing the DNS forwarder dnsmasq, which is used by major
networking vendors to cache the results of DNS requests.

This kind of research shows that DNS is a complex protocol
that tends to yield vulnerable implementations, and these
vulnerabilities can often be leveraged by external attackers
to take control of millions of devices simultaneously.

One particularly interesting class of vulnerabilities in DNS
implementations is related to a protocol feature called
“message compression.” Since DNS response packets often
include the same domain name or a part of it several times,
RFC 1035 (“Domain Names – Implementation and Spec-
ification”) specifies a compression mechanism to reduce
the size of DNS messages in its section 4.1.4 (“Message
compression”). This type of encoding is used not only in DNS
resolvers but also in multicast DNS (mDNS), DHCP clients
as specified in RFC 3397 (“Dynamic Host Configuration
Protocol (DHCP) Domain Search Option”) and IPv6 router
advertisements as specified in RFC8106 (“IPv6 Router

Advertisement Options for DNS Configuration”). Also, while
some protocols do not officially support compression, many
implementations still do support it because of code reuse
or a specific understanding of the specifications.

DNS compression is neither the most efficient compression
method nor the easiest to implement. As evidenced by the
historical vulnerabilities shown in Table 1, this compression
mechanism has been problematic to implement for 20 years
on a diverse range of products, such as DNS servers, enter-
prise devices (e.g., the Cisco IP phone) and, more recently,
the TCP/IP stacks Treck, uIP and PicoTCP.

RESEARCH REPORT | NAME:WRECK | Main Findings

https://en.wikipedia.org/wiki/Domain_Name_System
https://internethalloffame.org/inductees/paul-mockapetris
https://dns.google.com/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://www.saddns.net/
https://www.jsof-tech.com/disclosures/dnspooq/
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://tools.ietf.org/html/rfc1035
https://en.wikipedia.org/wiki/Multicast_DNS
https://tools.ietf.org/html/rfc3397
https://tools.ietf.org/html/rfc8106
https://cr.yp.to/djbdns/notes.html
https://cr.yp.to/djbdns/notes.html

FORESCOUT RESEARCH LABS 6

RESEARCH REPORT | NAME:WRECK | Main Findings

Vulnerability Affected Products Year

1 CVE-2000-0333 tcpdump, ethereal 2000

2 CVE-2002-0163 Squid 2002

3 CVE-2004-0445 Symantec DNS client 2004

4 CVE-2005-0036 Cisco IP Phone+ 2005

5 CVE-2006-6870 Avahi 2006

6 CVE-2011-0520 MaraDNS 2011

7 CVE-2017-2909 Mongoose 2017

8 CVE-2018-20994 TrustDNS 2018

9 CVE-2020-6071 VLC 2020

10 CVE-2020-6072 VLC 2020

11 CVE-2020-12663 Unbound 2020

12 CVE-2020-11901 Treck TCP/IP stack (Ripple20) 2020

13 CVE-2020-24335 uIP TCP/IP stack (AMNESIA:33) 2020

14 CVE-2020-24339 PicoTCP TCP/IP stack (AMNESIA:33) 2020

Table 1 – 20 years of vulnerabilities related to DNS message compression

2.1. Analyzed stacks and new
vulnerabilities

While working on Ripple20 and AMNESIA:33, we had already
found and disclosed three vulnerabilities related to message
compression (see Table 1). During that research, we hypoth-
esized that this type of vulnerability could represent a general
problem that is common to other stacks as well. For this rea-
son, we decided to focus on other TCP/IP stacks. Including
some of our previous work and this research, we evaluated
15 stacks for message compression vulnerabilities: 1 stack
under Ripple20 (Treck), 7 stacks under AMNESIA:33 (uIP,
PicoTCP, FNET, Nut/Net, lwIP, cycloneTCP and uC/TCP-IP)
and 7 new stacks under NAME:WRECK (FreeBSD’s DHCP,
IPnet, NetX, Nucleus NET, FreeRTOS+TCP, OpenThread and
Zephyr). We found 7 of the analyzed stacks to be vulnerable.

Table 2 lists all the stacks analyzed for message com-

pression vulnerabilities under Ripple20, AMNESIA:33 and
NAME:WRECK, as well as whether or not they are vulner-
able. As shown in the table, Treck TCP/IP, uIP, PicoTCP,
FreeBSD, IPNet, NetX and Nucleus NET are vulnerable to
the DNS compression bug. FNET, cycloneTCP, uC/TCP-IP,
FreeRTOS+TCP, Zephyr and OpenThread were found to
implement message compression securely, hence, not to
be vulnerable. Nut/Net and lwIP did not support message
compression, which makes them not vulnerable by design.

Table 3 focuses on the new vulnerabilities found under
NAME:WRECK. As shown in Table 3, these vulnerabilities
can be exploited by attackers to achieve Remote Code
Execution (RCE) via out-of-bounds write or Denial of Service
(DoS) via out-of-bounds read.

FORESCOUT RESEARCH LABS 7

RESEARCH REPORT | NAME:WRECK | Main Findings

Stack Description Versions Analyzed Vulnerable Research

Treck TCP/IP
TCP/IP stack actively developed by Treck Inc. since
1997 for real-time embedded devices. The stack is also
known as Elmic KASAGO in Asia.

6.0.1.66 Vulnerable Ripple20

uIP (microIP)

Released in 2001 as an open-source project and
extended by Cisco in 2008 with IPv6. Its development
has been halted as a standalone project, but it continues
as part of the Contiki OS, which in turn has a new version
called Contiki-NG.

uIP 1.0
Contiki 3.0
Contiki-NG

4.5

Vulnerable AMNESIA:33

PicoTCP
Developed by Altran Intelligent Systems and made open
source in 2013. The stack continues to be developed as
picoTCP-NG, which is no longer supported by Altran.

picoTCP 1.7.0
picoTCP-NG

2.0.0
Vulnerable AMNESIA:33

FreeBSD
Open-source Unix-like operating system with its own
TCP/IP stack, developed since 1993. Currently the most
popular OS in the BSD family. DHCP stack analyzed.

12.1 Vulnerable NAME:WRECK

IPnet

Embedded TCP/IP stack developed originally by
Interpeak and acquired by Wind River in 2006. It is used
commonly by the VxWorks RTOS and was previously
used with other OSes, such as OSE and INTEGRITY.

VxWorks 6.6 Vulnerable NAME:WRECK

NetX

Developed by Express Logic as part of the ThreadX
RTOS since 1997 and purchased by Microsoft in 2019.
It is currently an open-source project maintained by
Microsoft and has been renamed Azure RTOS NetX.

6.0.1 Vulnerable NAME:WRECK

Nucleus NET
TCP/IP stack of the Nucleus RTOS, maintained by
Siemens EDA. Developed since 1993, originally by
Accelerated Technology.

4.3 Vulnerable NAME:WRECK

FNET
Developed originally at Freescale in 2003 and made
public in 2009. It is currently maintained by Andrey
Butok.

4.6.3
Not

Vulnerable
AMNESIA:33

Nut/Net
TCP/IP stack used by NutOS, which has been
developed by the Ethernut project since 2002.

5.1
Not

Vulnerable
AMNESIA:33

lwIP

Developed in 2000 by Adam Dunkels and now
maintained by a large group of developers. lwIP has
become very popular as part of FreeRTOS or as a
standalone stack.

2.1.2
Not

Vulnerable
AMNESIA:33

Table 2 – Overview of the TCP/IP stacks scrutinized for DNS message compression vulnerabilities. Rows are colored according to whether the stack
is vulnerable: yellow for known vulnerable from previous research, red for found vulnerable in NAME:WRECK and green for not vulnerable.

https://treck.com/
https://github.com/adamdunkels/uip
https://github.com/tass-belgium/picotcp
https://www.freebsd.org/
https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://docs.microsoft.com/en-us/azure/rtos/netx/overview-netx
https://www.mentor.com/embedded-software/nucleus/
https://sourceforge.net/p/fnet/
https://ethernut.de/
https://savannah.nongnu.org/projects/lwip/

FORESCOUT RESEARCH LABS 8

RESEARCH REPORT | NAME:WRECK | Main Findings

Stack Description Versions Analyzed Vulnerable Research

cycloneTCP
Developed by Oryx Embedded and distributed in source
code form since 2013.

1.9.6
Not

Vulnerable
AMNESIA:33

uC/TCP-IP
Developed originally by Micrium in 2002 and open
sourced in February 2020. uC/OS, which typically relies
on the stack, is very popular in mission-critical devices..

3.06.00
Not

Vulnerable
AMNESIA:33

FreeRTOS
+TCP

Open-source stack developed as part of the widely
used FreeRTOS project.

2.2.2
Not

Vulnerable
NAME:WRECK

OpenThread
Open-source implementation of the Thread networking
technology developed by Google originally for Nest
products.

20191113
Not

Vulnerable
NAME:WRECK

Zephyr

Modern RTOS with its own TCP/IP stack (originally
based on uIP). Developed by Wind River in 2015
and open sourced in 2016 as a project of the Linux
Foundation.

2.3.0
Not

Vulnerable
NAME:WRECK

https://www.oryx-embedded.com/products/CycloneTCP
https://github.com/Micrium/uC-TCP-IP/
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://openthread.io/
https://zephyrproject.org/

FORESCOUT RESEARCH LABS 9

RESEARCH REPORT | NAME:WRECK | Main Findings

CVE ID Stack Description
Affected
feature

Potential
Impact

CVSSv3.1
Score

2020-
7461

FreeBSD

The vulnerability exists due to a boundary error when parsing
option 119 data in DHCP packets in dhclient(8). A remote
attacker on the local network can send specially crafted data
to the DHCP client, trigger heap-based buffer overflow and
execute arbitrary code on the target system.

Message
compression

RCE 7.7

2016-
20009

IPnet

The DNS client has a stack-based overflow on the message
decompression function leading to a potential RCE. We found
this independently but it turned out to be a bug collision with
an issue previously reported by Exodus Intelligence, fixed
by Wind River in 2016 and that never got assigned a CVE.
We discussed the matter with Wind River and the CERT CC
in November 2020, who agreed that CVE IDs with an end-
of-life tag should be issued. After months without further
action from Wind River, we asked the original finders of the
vulnerability to request the IDs in January 2021.

Message
compression

RCE 9.8

2020-
15795

Nucleus
NET

The DNS domain name label parsing functionality does not
properly validate the names in DNS responses. The parsing
of malformed responses could result in a write past the
end of an allocated structure. An attacker with a privileged
position in the network could leverage this vulnerability to
execute code in the context of the current process or cause a
denial-of-service condition.

Domain name
label parsing

RCE 8.1

2020-
27009

Nucleus
NET

The DNS domain name record decompression functionality
does not properly validate the pointer offset values. The
parsing of malformed responses could result in a write past
the end of an allocated structure. An attacker with a privileged
position in the network could leverage this vulnerability to
execute code in the context of the current process or cause a
denial-of-service condition.

Message
compression

RCE 8.1

2020-
27736

Nucleus
NET

The DNS domain name label parsing functionality does not
properly validate the name in DNS responses. The parsing of
malformed responses could result in a read past the end of
an allocated structure. An attacker with a privileged position
in the network could leverage this vulnerability to cause a
denial-of-service condition.

Domain name
label parsing

DoS 6.5

Table 3 – New vulnerabilities in NAME:WRECK. Rows are colored according to the CVSS score: yellow for medium or high and red for critical.

https://blog.exodusintel.com/2016/08/09/vxworks-execute-my-packets/
https://blog.exodusintel.com/2016/08/09/vxworks-execute-my-packets/
https://cve.mitre.org/cve/cna/CVE_Program_End_of_Life_EOL_Assignment_Process.html
https://cve.mitre.org/cve/cna/CVE_Program_End_of_Life_EOL_Assignment_Process.html

FORESCOUT RESEARCH LABS 10

RESEARCH REPORT | NAME:WRECK | Main Findings

CVE ID Stack Description
Affected
feature

Potential
Impact

CVSSv3.1
Score

2020-
27737

Nucleus
NET

The DNS response parsing functionality does not properly
validate various length and counts of the records. The
parsing of malformed responses could result in a read
past the end of an allocated structure. An attacker with
a privileged position in the network could leverage this
vulnerability to cause a denial-of-service condition.

Domain name
label parsing

DoS 6.5

2020-
27738

Nucleus
NET

The DNS domain name record decompression functionality
does not properly validate the pointer offset values. The
parsing of malformed responses could result in a read
access past the end of an allocated structure. An attacker
with a privileged position in the network could leverage
this vulnerability cause a denial-of-service condition.

Message
compression

DoS 6.5

2021-
25677

Nucleus
NET

The DNS client does not properly randomize DNS
transaction ID (TXID) and UDP port numbers, allowing
attackers to perform DNS cache poisoning/spoofing
attacks.

Transaction ID
DNS

cache
poisoning

5.3

* NetX

In the DNS resolver component, functions
_ n x _ d n s _ n a m e _ s t r i n g _ u n e n c o d e and
_nx_dns_resource_name_real_size_calculate
do not check that the compression pointer does
not equal the same offset currently being parsed,
which could lead to an infinite loop. In the function
_nx_dns_resource_name_real_size_calculate
the pointer can also point forward and there is no out-of-
bounds check on the packet buffer.

Microsoft has classified these issues as leading to DoS. We
believe they could lead to a difficult to exploit RCE.

Message
compression

DoS 6.5

*We are waiting for a CVE ID to be assigned to this issue.

FORESCOUT RESEARCH LABS 11

RESEARCH REPORT | NAME:WRECK | Exploitation

A note on the Nucleus NET vulnerabilities

Notice that CVE-2020-15795, CVE-2020-27736, CVE-
2020-27737 and CVE-2021-25677 on Nucleus NET are
not related to message compression. These vulnerabilities
were found as by-products of the analysis of the imple-
mentation of message compression and, as discussed
in Section 3, they can be used in conjunction with CVE-
2020-27009 or CVE-2020-27738 to amplify their effects.
This is representative of the facts that compression vulnera-

A note on the Nordic nRF5 Software

Development Kit

We also analyzed the DNS implementation of the Nordic nRF5
SDK v15.2.0 (file dns6.c in amazon-freertos/vendors/
nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/
dns6). We found two out-of-bounds reads, potentially leading to
denial-of-service, in the DNSv6 resolver component within func-
tions skip_compressed_hostname and server_response.

INFORMATIONAL

bilities are often found with other DNS-related issues in TCP/
IP stacks and that typically a combination of vulnerabilities
can be exploited together to achieve an RCE. For example,
we previously used a combination of CVE-2020-25107 (lack
of NULL-termination validations) and CVE-2020-25108 (lack
of length validation) to create a proof-of-concept for Remote
Code Execution in the Nut/Net stack (see our AMNESIA:33
report for more details).

These issues were reported to Nordic, acknowledged and
patched, but never issued CVE IDs because the vendor con-
sidered that this is experimental code that should not be used
in production devices. We believe this is dangerous since,
in many cases, reference code included with SDKs ends up
forming the basis for products developed with that SDK.

3. Exploitation
In this section, we discuss how an attacker could get remote
control of a device by leveraging three vulnerabilities in
NAME:WRECK to inject malicious code on a target.

With the first vulnerability, CVE-2020-27009, the attacker can
craft a DNS response packet with a combination of invalid
compression pointer offsets that allows them to write arbi-
trary data into sensitive parts of a device’s memory, where
they will then inject the code. The second vulnerability, CVE-

2020-15795, allows the attacker to craft meaningful code to
be injected by abusing very large domain name records in
the malicious packet. Finally, to deliver the malicious packet
to the target, the attacker can bypass DNS query-response
matching using CVE-2021-25667.

In Section 4, we discuss how this exploitation fits in a real-
istic attack scenario.

https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/research-labs/amnesia33/

FORESCOUT RESEARCH LABS 12

TECHNICAL DIVE IN

3.1. About DNS message parsing

Before discussing the technical details of the exploitation,
we briefly present the format of domain names transmitted
in network packets. This is mostly specified in RFC 1035.

A domain name is encoded as a sequence of labels ter-
minated by the NULL byte (0x00). Each label is preceded
by a byte specifying its length (with a maximum length of
63 bytes). For example, the domain name “google.com” is
encoded as follows: it starts with the byte 0x06 that indi-
cates the length of the first label, followed by the bytes that
correspond to the first label itself (0x67 0x6f 0x6f 0x67
0x6c 0x65 == “google”), continues with the length of the
second label (0x03), the bytes that correspond to the second
label (0x63 0x6f 0x6d == “com”) and ends with the NULL
terminator byte (0x00). Since DNS response packets often
include the same domain name several times, RFC 1035
specifies a compression mechanism to reduce the size
of DNS messages by replacing a sequence of labels with
a pointer to a previous occurrence of the same sequence.
The pointer is encoded in two bytes, the first of them begins
with two high bits 11 and the other 14 bits specify an offset
from the start of the DNS header. Continuing the example
above, and supposing there is a label “google.com” at offset
0x10 of a DNS response packet, the domain “www.google.
com” could be encoded as 0x03 0x77 0x77 0x77 0xC0
0x10 (length 3, then “www”, then 0b1100000000010000,
which is the two first bits 0b11 and the offset 0x10). A
parser in a DNS server or client would then have to read
this packet and when encountering the bits 0b11, shall
follow the pointer to offset 0x10 to be able to expand the
data into the desired result (“www.google.com”).

3.2. Technical details

Figure 1 shows the DNS_Unpack_Domain_Name() function
from Nucleus NET. Despite its small size, this function has

several vulnerabilities that may lead to a successful Remote
Code Execution attack: CVE-2020-27736, CVE-2020-27738,
CVE-2020-15795 and CVE-2020-27009.

The function is called whenever a domain name must be
retrieved from a DNS answer record. The first parameter
of the function (dst) is a pointer to a buffer into which the
parsed domain name will be copied. The second parameter
(src) initially points to the first byte of a domain name. The
third parameter (buf_begin) is a pointer to the first byte
of the DNS header.

Figure 1 – The DNS_Unpack_Domain_Name() function in Nucleus NET

RESEARCH REPORT | NAME:WRECK | Exploitation

https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 13

TECHNICAL DIVE IN

RESEARCH REPORT | NAME:WRECK | Exploitation

The code parses a domain name in a while loop (line 8)
moving the src pointer within the packet so that it points to
a byte currently being parsed. The while loop stops when
the src pointer encounters the NULL byte, which means
the end of the domain name. Before entering the parsing
loop, the code saves the original src pointer into a different
variable called savesrc. This pointer is used for calculating
the length of an uncompressed portion of the domain name.

Within the loop, the code fetches the first byte of the domain
name on its first iteration. This byte must be the size of
the first label of the name, which will be stored in the size
variable (line 9). Next, the most significant two bits of this
length byte are checked to determine whether it is a normal
length byte or a compression pointer (line 11). If at this
point size is a normal label length, src is moved one byte
forward (line 21) and the number of bytes equal to size are
copied into the buffer using the pointer dst (lines 23-27).
Note that the code truncates the value of size to 63 bytes
as per RFC1035 (line 23). The variable retval (line 33) will
hold the total length of the retrieved domain name.

Let us consider the compression pointer check at line 11
again. If at this point size holds a compression pointer, the
code will add 2 bytes to the resulting name length retval
if it is the first compression pointer encountered (lines
12-13). Then, the compression offset will be calculated and
src will be moved from the first byte of the DNS payload
(buf_begin) according to that offset (lines 16-17); the size
variable will then hold the label length byte of a domain name
to which src now points (line 18). Then, the code should
process this domain label as shown before (lines 21-27).
The assumption here may be that a byte pointed at a com-
pression offset will be the length of an uncompressed label.
However, if it is another compression pointer, the while loop
at line 11 will perform another iteration and src will jump to
another location specified by the new compression offset.

This directly violates RFC1035 because “… [compression
pointer is] a pointer to a prior occurrence of the same name”.
The actual problem with this code is that the compres-
sion offset value is not validated and, therefore, is under
complete control of the attackers. We have reported this
vulnerability as CVE-2020-27009. This issue has several
consequences:

• If we choose a compression offset such that src jumps
back to the same compression pointer, the while loop on
lines 11-18 will never terminate and the TCP/IP stack will
reach a Denial-of-Service condition. Consider the example
shown in Figure 8. In this case, we would have to set
the compression pointer and the next byte to 0xc01e so
that the offset in this case will be 30, and this is exactly
the offset at which this compression pointer is located.

• If we choose a large enough value such as 0xffff (the
offset will be 16383), src will jump forward within the
packet instead of pointing “to a prior occurrence of the
same name” as per RFC1035. The code at lines 23-24
will eventually read out of bounds of the packet. The
immediate impact may be a Denial-of-Service condition
and/or an information leak.

• By carefully choosing a combination of invalid compres-
sion offset placed in a DNS packet, attackers can perform
controlled out-of-bounds writes into the destination buffer
dst, potentially achieving Remote Code Execution. The
exploitation nuances depend on the implementation spe-
cifics of a TCP/IP stack (e.g., how domain name buffers
are allocated, what other issues present, among others).

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 14

RESEARCH REPORT | NAME:WRECK | Exploitation

Below, we discuss how the third point can be achieved by
leveraging other vulnerabilities present in Nucleus NET.

Figure 1 shows the code containing CVE-2020-15795: There
are no checks that ensure that a domain name extracted
from a DNS record is within the 255 bytes limit (as required
by RFC1035).

Figure 2 shows an excerpt from the DNS_Extract_Data()

TECHNICAL DIVE IN

function that processes DNS response packets and that
eventually calls the DNS_Unpack_Domain_Name() func-
tion shown on Figure 1 (lines 27 and 41). The buffer name
into which a domain name is copied is allocated in the
heap (line 19) with the NU_Allocate_Memory()¹ function
call. The size of the name buffer is limited to 255 bytes
with the constant DNS_MAX_NAME_SIZE (as per RFC1035).

Figure 2 – An excerpt from the DNS_Extract_Data() function in Nucleus NET

1 The way the memory allocated may be platform-specific, which may influence the exploitation nuances.

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 15

TECHNICAL DIVE IN

The domain label length in the DNS_Unpack_Domain_
Name() function (Figure 1) is limited to 63 bytes, respect-
ing RFC1035. The expression (size & 0x3f) on line 23
ensures that the code copies at most 63 bytes inside
name at a time. However, there is no actual check that
limits the number of bytes copied into name. Moreover,
the code of DNS_Unpack_Domain_Name() relies on the
presence of a NULL terminator in a domain name to stop
copying more bytes (Figure 1, line 8). This is a mistake
because the NULL byte can be placed at any offset within
the name (or not placed at all). We reported this issue
under CVE-2020-15795.

These two issues may lead to controlled out-of-bounds
writes causing either a Denial-of-Service condition
through dereferencing or writing to unmapped or pro-
tected memory or leading to Remote Code Execution.
Specifically, out-of-bounds writes can occur during either
of the two calls of DNS_Unpack_Domain_Name() shown
on Figure 2 (lines 27 or 41), corrupting the metadata of
heap memory chunks adjacent to the memory chunk
allocated for name. This is a classic heap overflow, which
is very similar to CVE-2020-25111, whose exploitation is
described in the AMNESIA:33 report.

The easiest way to construct a payload that will overflow
name and overwrite heap metadata is to chain multiple
domain labels of size 63 together so that the total sum
of the bytes copied inside name will be larger than 255.
However, this is not very practical since it means that
the DNS packet may be overly large to hold such a large
sequence of bytes (and may be flagged by an IDS). This
is where the compression pointer vulnerability comes in
handy, allowing attackers to wreak havoc even with tiny
sequences of bytes.

To illustrate this, we construct such a domain name that
consists of only four bytes: a single label of length 1 and
a compression pointer that points back on the length
byte of this label (e.g., 0x01 0x41 0xc0 0xe1). These
four bytes will cause DNS_Unpack_Domain_Name() to
overwrite all 255 bytes of name with a sequence of “A”
and “.” characters and to write this sequence past name,
corrupting the memory. Eventually, the code may crash
(if there is a memory protection mechanism in place) at
line 24 of DNS_Unpack_Domain_Name() when the dst
pointer attempts to dereference memory at an invalid
address.

This is a simple example of how to abuse vulnerable
DNS decompression functions. Details about creating
more complex payloads are available in the CVE-2020-
11901 whitepaper released by JSOF.

Finally, to deliver the malicious DNS response packet,
attackers must be able to pass the DNS query-response
matching. CVE-2021-25667 simplifies this bit: Nucleus
NET stack did not generate sufficiently random val-
ues of TXID (in fact this value was not even used for
query-response matching) and the source UDP port
number for DNS query packets, allowing to perform
low-effort DNS spoofing attacks and to force the stack
into accepting malicious DNS responses.

RESEARCH REPORT | NAME:WRECK | Exploitation

https://tools.ietf.org/html/rfc1035
https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.jsof-tech.com/wp-content/uploads/2020/08/Ripple20_CVE-2020-11901-August20.pdf
https://www.jsof-tech.com/wp-content/uploads/2020/08/Ripple20_CVE-2020-11901-August20.pdf

FORESCOUT RESEARCH LABS 16

2

1

3

DHCPDNS

Exposed IoT Internal
IT server

Internet

INTERNAL NETWORK

DNS Server

4. An attack scenario
leveraging NAME:WRECK
Domain name parsing vulnerabilities may expose both
internet-connected and internal devices to attacks since
they affect exposed DNS clients, as well as local DHCP
clients (although DHCP broadcasts can also be transported
across networks via relay agents, as described in RFC1542).

An attack scenario leveraging NAME:WRECK vulnerabilities
on internal and external targets is shown in Figure 3. The

In our scenario, the attacker obtains Initial Access into an
organization’s network (step 1 in the figure) by compro-
mising a device issuing DNS requests to a server on the
internet. To obtain initial access, the attacker can exploit
one of the RCEs affecting Nucleus NET. The compromise
can happen, for instance, by weaponizing the exploitation
discussed briefly in Section 3.

The caveat about DNS-based vulnerabilities is that they
require the attacker to reply to a legitimate DNS request with
a malicious packet. That can be achieved via a man-in-the-
middle somewhere in the path between the request and the

scenario we describe is based on real-world attacks that
have happened in the past and that have seen IoT devices
being used both as entry points and for data exfiltration.
These past attacks include the data exfiltration at NASA JPL
using a Raspberry Pi, the Las Vegas casino hack exploiting
an internet-connected thermometer and the oil and gas
company that had internet-connected exercise bicycles
sending corporate data to the internet.

reply or by exploiting the queried DNS servers. Servers or
forwarders vulnerable to DNSpooq and similar vulnerabilities
on the way between the target device and a more authori-
tative DNS server, for instance, could be exploited to reply
with malicious messages carrying a weaponized payload.

After the initial access, the attacker can use the compro-
mised entry point to set up an internal DHCP server and
do a Lateral Movement (step 2) by executing malicious
code on vulnerable internal FreeBSD servers broadcasting
DHCP requests.

RESEARCH REPORT | NAME:WRECK | An attack scenario leveraging NAME:WRECK

Figure 3 - Attack scenario

https://tools.ietf.org/html/rfc1542
https://attack.mitre.org/tactics/TA0001/
https://www.zdnet.com/article/nasa-hacked-because-of-unauthorized-raspberry-pi-connected-to-its-network/
https://www.zdnet.com/article/nasa-hacked-because-of-unauthorized-raspberry-pi-connected-to-its-network/
https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://awakesecurity.com/wp-content/uploads/2019/12/CS-Oil-And-Gas-IoT.pdf
https://www.jsof-tech.com/disclosures/dnspooq/
https://attack.mitre.org/tactics/TA0008/

FORESCOUT RESEARCH LABS 17

RESEARCH REPORT | NAME:WRECK | The impact of NAME:WRECK

Finally, the attacker can use those internal compromised
servers to Persist on the target network or to Exfiltrate data
(step 3) via the internet-exposed IoT device.

Another exploitation scenario involves setting up a DNS
server in the internal network and exploiting devices broad-
casting mDNS requests. We did not discuss specific mDNS
vulnerabilities in this report, but there are two prominent
DoS examples in AMNESIA:33 – CVE-2020-17469 affecting
FNET and CVE-2020-24340 affecting picoTCP. These can
be used to Impact internal IoT/OT devices by taking them
offline, thus stopping critical operations.

One important note is that although this type of vulnerability
appears both in typical IT software (FreeBSD) and typical OT/
IoT embedded software (Nucleus NET and NetX), exploita-
tion in each case is very different. Embedded OSes usually
have no support for modern exploit mitigations, such as
non-executable data memory (also known as ESP, DEP, NX
and W^X), address space layout randomization (ASLR) and
stack canaries for protection against memory corruption
exploitation. A modern OS such as FreeBSD, on the other
hand, implements not only those standard mitigations, but
also advanced concepts such as capabilities and sandbox-
ing. The affected FreeBSD DHCP client (dhclient) is one of
the applications that runs under a sandbox in the OS.

5. The impact of
NAME:WRECK
As discussed at length in the Ripple20 and AMNESIA:33
works, understanding the full impact of vulnerabilities on
TCP/IP stacks is difficult because identifying affected ven-
dors and devices using specific IP stack components is very
challenging given the absence of a software bill of materials.

This research uncovered vulnerabilities on very popular
stacks, and below we discuss some of their uses to give an
idea of where they can be found and how many devices are

affected. We focus our analysis on three stacks: Nucleus
NET, NetX and FreeBSD. Nucleus NET and NetX have been
used for decades in several critical OT and embedded
devices. FreeBSD’s network stack is the one that stands out
because, although it is used in some embedded devices,
it has its origins in general-purpose computing and is still
today popular in several IT servers and network appliances.

The Nucleus NET TCP/IP stack is affected by two vulnera-
bilities that could lead to RCE, CVE-2020-15795 and CVE-
2020-27009. According to the website of Nucleus RTOS
(which runs the Nucleus TCP/IP stack), it is deployed in more
than 3 billion devices. A quick look at Siemens’ page listing
customer success stories reveals its use in scenarios such
as healthcare (ZOLL defibrillators and ZONARE ultrasound
machines), IT (BDT AG storage systems) and critical sys-
tems (Garmin avionics navigation). But we believe that most
of those 3 billion are actually device components such as
MediaTek IoT chipsets and baseband processors used in
smartphones and other wireless devices (which is similar
to the distribution seen below for ThreadX).

FreeBSD (also vulnerable to NAME:WRECK) is widely known
to be used for high-performance servers in millions of IT
networks, including major websites such as Netflix and
Yahoo. FreeBSD is also the basis for other well-known
open-source projects, such as the m0n0wall and pfSense
firewalls, as well as several commercial network appliances,
such as Check Point IPSO and McAfee SecurOS.

Another vulnerable stack is NetX, usually run by the ThreadX
RTOS. According to their website, the stack might be used in
HTC wearable fitness products, Welch Allyn wearable patient
monitors, Broadcom SoCs, Autotalks automotive solutions
and the NASA Mars Reconnaissance Orbiter. Several HP
printer models, old versions of Intel’s Management Engine,
popular WiFi SoCs and cellular basebands also run ThreadX.
ThreadX was known to have 6.2 billion deployments in 2017
with the following distribution of product categories:

RESEARCH REPORT | NAME:WRECK | The impact of NAME:WRECK

https://attack.mitre.org/tactics/TA0003/
https://attack.mitre.org/tactics/TA0010/
https://attack.mitre.org/tactics/TA0040/
https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2019/04/18/uArmor-EuroSP19.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://www.cl.cam.ac.uk/research/security/capsicum/
https://www.cl.cam.ac.uk/research/security/capsicum/
https://www.freebsd.org/cgi/man.cgi?query=dhclient&sektion=8
https://wiki.freebsd.org/Capsicum
https://www.mentor.com/embedded-software/nucleus/
https://www.mentor.com/embedded-software/success/zoll
https://www.mentor.com/embedded-software/success/convertible_ultrasound
https://www.mentor.com/embedded-software/success/convertible_ultrasound
https://www.mentor.com/embedded-software/success/bdt-ag-success
https://www.mentor.com/embedded-software/success/garmin_at
https://labs.mediatek.com/en/chipset/overview
https://en.wikipedia.org/wiki/Baseband_processor
https://en.wikipedia.org/wiki/Baseband_processor
https://docs.freebsd.org/en_US.ISO8859-1/articles/building-products/article.html
https://docs.freebsd.org/en_US.ISO8859-1/articles/building-products/article.html
https://docs.freebsd.org/en_US.ISO8859-1/books/handbook/nutshell.html
https://docs.freebsd.org/en_US.ISO8859-1/books/handbook/nutshell.html
https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD
https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD
https://azure.microsoft.com/en-us/services/rtos/#customer-stories
https://www.bleepingcomputer.com/news/security/vulnerabilities-found-in-highly-popular-firmware-for-wifi-chips/
https://www.theiphonewiki.com/wiki/XMM6180
https://www.businesswire.com/news/home/20171009005069/en/Express-Logic%E2%80%99s-ThreadX%C2%AE-RTOS-Surpasses-6.2-Billion-Total-Deployments

FORESCOUT RESEARCH LABS 18

RESEARCH REPORT | NAME:WRECK | The impact of NAME:WRECK

Product category ThreadX deployments

Mobile Phones 3.4 billion

Consumer Electronics 1.4 billion

Office/Business Automation 923 million

Retail Automation 195 million

Industrial Automation & Energy/Power 161 million

Communication & Networking 86 million

Aerospace & Defense 19 million

Other & General Purpose 12 million

Automotive & Transportation 12 million

Medical Devices 12 million

Table 4 – Deployments of ThreadX across products categories [Source: BusinessWire, 2017]

A note on actual affected devices

Note that not all devices running ThreadX, Nucleus RTOS or
FreeBSD are vulnerable to NAME:WRECK. Baxter infusion
pumps, for instance, use Digi’s Net+OS, which is based on
ThreadX but runs the Treck TCP/IP stack. In addition, not all
devices using a vulnerable stack enable a DNS (or DHCP in

HIGHLIGHTS

the case of FreeBSD) client, and not all versions of the clients
are vulnerable. However, if we conservatively assume that 1%
of the more than 10 billion deployments discussed above are
vulnerable, we can estimate that at least 100 million devices
are impacted by NAME:WRECK.

To have a better picture of what these impacted devices are
and how they are deployed, we looked at two data sources 2:

• Online devices. We queried Shodan for devices having
banners indicating the use of the OSes associated with
the stacks, for instance the “FreeBSD” string on SSH,
HTTP, NTP and other servers.

• Forescout Device Cloud. Device Cloud is a closed repos-
itory of information coming from devices monitored by
Forescout appliances. We queried it for information such
as OS classification and application banners, similar to
what was done for Ripple20 and AMNESIA:33.

2 All numbers in this section are up to date as of January 27, 2021.

https://www.businesswire.com/news/home/20171009005069/en/Express-Logic%E2%80%99s-ThreadX%C2%AE-RTOS-Surpasses-6.2-Billion-Total-Deployments
https://www.baxter.com/sites/g/files/ebysai746/files/2020-07/BulletinSpectrumDigiTreck%20%28003%29.pdf
https://www.baxter.com/sites/g/files/ebysai746/files/2020-07/BulletinSpectrumDigiTreck%20%28003%29.pdf
https://www.digi.com/pdf/fs_netos7.pdf

FORESCOUT RESEARCH LABS 19

Shodan searches (shown in Figures 4, 5, 6 and 7) reveal that
there are more than 1 million internet-connected instances of
FreeBSD, more than 2,500 running Nucleus RTOS and more
than 600 running ThreadX. The big difference can be partially
explained by the fact that devices running FreeBSD are often
supposed to be internet-exposed (such as web servers and

firewalls), whereas those running embedded RTOSes are not
supposed to be remotely accessible. Interestingly, a search
for “Nucleus/4.3” returns more than 700,000 instances,
but they seem to be mostly honeypots containing several
disconnected application banners.

RESEARCH REPORT | NAME:WRECK | The impact of NAME:WRECK

Figure 4 – Exposed devices running FreeBSD

Figure 6 – Exposed devices running Nucleus RTOS
(“Operating System: Nucleus PLUS”)

Figure 5 – Exposed devices running Nucleus RTOS
(“220 Nucleus FTP”)

Figure 7 – Exposed devices running ThreadX RTOS

TOTAL RESULTS

1,052,162

TOP COUNTRIES

TOTAL RESULTS

1,345

TOP COUNTRIES

TOTAL RESULTS

1,453

TOP COUNTRIES

TOTAL RESULTS

621

TOP COUNTRIES

United States 201,818

Japan 103,653

France 57,304

Germany 55,354

Canada 47,603

France 264

United States 172

Italy 134

Canada 113

Germany 102

Germany 261

Italy 143

Spain 127

France 113

Czechia 102

Belgium 140

Sweden 85

Italy 72

United States 59

Greece 54

FORESCOUT RESEARCH LABS 20

RESEARCH REPORT | NAME:WRECK | The impact of NAME:WRECK

To further identify and classify the impacted devices, we
analyzed the Forescout Device Cloud, which contains infor-
mation about more than 13 million devices in customer
networks. Figure 8 shows a breakdown of the number of

devices running those OSes per industry vertical. More than
230,000 devices were found running FreeBSD. Similarly,
more than 4,000 devices were found running Nucleus RTOS
and more than 2500 running ThreadX RTOS.

Entertainment 50,012

Healthcare 37,358

Government 32,047

Manufacturing 26,975

Retail 20,254

Others 69,055

Healthcare 1,726

Government 670

Financial Services 364

Technology 328

Manufacturing 232

Others 711

Retail 1,152

Healthcare 461

Government 320

Manufacturing 210

Services 125

Others 357

FreeBSD devices

Nucleus RTOS devices

ThreadX RTOS devices

Vertical

Vertical

Vertical

Figure 8 - Devices running the affected IP stack/OSes in Forescout Device Cloud: Top verticals

​
43%

​
17%

​
9%

​
8%

​
6%

​
17%

​
21%

​
16%

​
14%

​
11%

​
9%

​
29%

​
44%

​
17%

​
12%

​
8%

​
5%

​
14%

FORESCOUT RESEARCH LABS 21

6. It’s You Again: Recurrent
Anti-Patterns
In this Section, we discuss several recurring implemen-
tation issues within DNS message parsers, which we
call anti-patterns (AP). These anti-patterns were identi-
fied as the common causes of vulnerabilities present in
NAME:WRECK and in our previous research. Often, these
issues can be exploited individually, but their combined
presence can give more freedom to the attacker when it
comes to exploitation.

6.1. AP#1 – Lack of TXID validation,
insufficiently random TXID and source
UDP port
The DNS header begins with the DNS transaction ID (TXID)
field (see RFC6895). The source UDP port of the outgoing
DNS query is used in conjunction with TXID as a synchro-
nization mechanism between DNS clients and servers to
match outgoing DNS queries to incoming DNS responses.
Similar to initial sequence numbers (ISN) for TCP connec-
tions, both source UDP port and TXID must be difficult to
predict, otherwise attackers can forge DNS replies that will
be accepted by a vulnerable DNS client (DNS spoofing).
Even if only one of these two values can be easily pre-
dicted, it would significantly reduce the effort required for
the attackers to “brute-force” the other one and to perform
DNS spoofing.

We have observed cases in which TXID of incoming DNS
replies is not validated (e.g., CVE-2020-17439 in uIP) and
cases in which TXID of outgoing DNS requests will be always
set to a constant value (e.g., CVE-2020-17470 in FNET).
CVE-2021-25677 in Nucleus NET combines both cases:
The TXID has a constant value which is not even used for
query-reply matching, and the source UDP port value is
predictable.

To remediate this anti-pattern, a vulnerable implementation
should use a secure pseudo-random number generator
algorithm for creating less predictable TXIDs and source
UDP ports, use different TXID and UDP port values for each
outgoing DNS query and implement proper DNS query-re-
sponse matching logic.

6.2. AP#2 – Lack of domain name
character validation

RFC1035 recommends that domain labels should only con-
sist of the alphabetic characters from “A” to “Z” digits and
the hyphen character. For example, example-demo112.com
conforms to this recommendation, while ex@mple_demo.
com does not. However, as stated in RFC2181, this is not
a strong requirement (unlike maximum domain name and
label lengths), so DNS implementations must not place
any restrictions on the label characters that can be used.

This contradiction may stem from the confusion between
domain names3 and hostnames4. As stated in RFC2181, “…
[the fact that] any binary label can have a MX record does not
imply that any binary name can be used as the host part of an
e-mail address… ” Therefore, while certain DNS records may
have any set of characters as a part of the domain name,
internet hosts must conform to RFC1035. In practice, we
rarely see these checks implemented, and to keep things
simple, any character will be accepted as a valid part of a
domain name of any record type. While this is not a vulner-
ability per se, the consequence is that attackers have more
freedom in creating exploit payloads because any character
will be accepted by a vulnerable DNS parser.

RESEARCH REPORT | NAME:WRECK | It’s You Again: Recurrent Anti-Patterns

3 Domain name – an identifier of a network/resource in a DNS database.
4Hostname – a specific kind of domain name which is used to identify internet hosts.

https://tools.ietf.org/html/rfc6895
https://forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://tools.ietf.org/html/rfc1035
http://example-demo112.com
http://ex@mple_demo.com
http://ex@mple_demo.com
https://tools.ietf.org/html/rfc2181
https://tools.ietf.org/html/rfc2181
https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 22

6.3. AP#3 – Lack of label and name lengths
validation

RFC1035 restricts the length of individual domain name
labels to 63 characters and the length of domain names
to 255 characters. Some implementations do not restrict
domain labels and names to these lengths, allowing attack-
ers to craft longer payloads for facilitating exploitation of
other vulnerabilities in DNS parsers. Another related issue
occurs when these length values are copied directly from
a network packet and not checked with respect to the data
present. For example, even though the maximum domain
label and name lengths were respected in Nucleus NET,
there was no check whether the reported lengths were
correct with respect to the actual number of bytes present
in a domain name. This resulted in CVE-2020-27736 and
CVE-2020-15795.

Often, these length values correspond to the size of some
internal buffers that will hold domain names or labels, and
they are allocated in heap or stack regions of the memory.
The absence of bounds checks here allows the attackers
to control the allocation of these buffers.

6.4. AP#4 – Lack of NULL-termination
validation

RFC1035 states that domain names must end with a NULL
byte (0x00) that signifies the end of a name. Some imple-
mentations may just assume that domain names in incom-
ing DNS messages are terminated with NULL, but they make
no checks for it. This issue is closely related to the absence
of name and response data length checks. Attackers can
control the placement of a NULL byte at a certain offset in a
domain name, which in combination with lax domain name
and label length checks may result in controlled memory
reads and writes.

Even when the domain name boundary checks are imple-
mented correctly, the absence of explicit checks for the
NULL byte placement may lead to memory-related off-by-one
errors, causing a Denial-of-Service condition. CVE-2020-
27736 in Nucleus NET and CVE-2020-17440 in uIP (part
of AMNESIA:33) are good examples of such a vulnerability.

6.5. AP#5 – Lack of the record count fields
validation

RFC6895 provides the format for DNS query/response
headers: Every header contains four 2-byte fields that spec-
ify the number of questions (QCOUNT), answers (ANCOUNT),
authorities (NSCOUNT) and additional information records
(ARCOUNT). After the DNS header, there must be present
the data that can be parsed into individual records (e.g.,
answers, questions, among others).

We have observed a recurring implementation error in which
record count fields (e.g., QCOUNT and ANCOUNT) are taken
directly from the DNS packet, but there are no checks that
validate whether the packet has enough data to hold the
specified numbers of records. While RFC5625 mentions that
DNS packets with incorrect QCOUNT/ANCOUNT/NSCOUNT/
ARCOUNT values should be dropped, developers of TCP/
IP stacks may fail to do so.

CVE-2020-27737 in Nucleus NET and several other vulnera-
bilities within AMNESIA:33 are examples of this issue. Here,
by setting a bogus value to ANCOUNT and by providing
no answer records within the packet (or fewer than set in
ANCOUNT), attackers may cause a Denial-of-Service con-
dition when the code attempts to read out of bounds of the
packet when it tries to parse the answer records that do not
exist. The code that implements the parsing of DNS records
must first validate that the specified number of records exist
within the packet, before attempting to parse it.

6.6. AP#6 – Lack of domain name com-
pression pointer and offset validation

RFC1035 defines that whenever a domain label length byte
has the value such that the two highest bits are set to 1, this
byte is treated as a compression pointer. The compression
offset is specified in the next 14 bits (beginning at the third
most significant bit of the compression pointer). The value
of the compression offset represents the offset in bytes
starting from the beginning of the DNS header, at which
a non-compressed domain name is located. Consider the
example shown on Figure 9.

RESEARCH REPORT | NAME:WRECK | It’s You Again: Recurrent Anti-Patterns

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc6895
https://tools.ietf.org/html/rfc5625
https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 23

Figure 9 – DNS packet with a compressed domain name

Here, the first row represents the DNS header (the bytes
from 1 to 12). Let us assume that this packet is a reply to a
DNS query and its QCOUNT and ANCOUNT are both equal
to 1. The next 18 bytes correspond to the question record:
14 bytes of the domain name that the DNS client requested,
followed by 4 bytes of TYPE and CLASS fields. The last 4
bytes correspond to the answer record.

The domain name in the question record is www.test.com.
The bytes that correspond to the domain label lengths and
the NULL terminator are shown in bold. When we look at
the bytes of the answer, we notice the byte 0xc0 – it is a
compression pointer because the two highest bits of this
value are set to 1 (the binary representation of 0xc0 is
0b11000000). This means that the record does not contain
a domain name, but it refers an uncompressed name that

should be present in some previous record. We must now
compute the compression offset which holds the position
of this name in the DNS payload.

The compression offset is computed as follows (the process
is illustrated on Figure 10): The two most significant bits of
the compression pointer byte are set to 0, and it is shifted
left by 8 bits so that the lower byte of the resulting 2-byte
value becomes 0x00. Next, this 2-byte value is added to
the second byte that comes after the pointer. The resulting
2-byte value will be the offset in the DNS payload at which
the domain name starts. For the case illustrated on Figure
9 the compression offset is 12, and the byte at that offset
is 0x03 (the first byte of the domain name in the question
record), and the domain name in the answer record is also
“www.test.com”.

Figure 10 – Computing the compression offset

RESEARCH REPORT | NAME:WRECK | It’s You Again: Recurrent Anti-Patterns

FORESCOUT RESEARCH LABS 24

RESEARCH REPORT | NAME:WRECK | Mitigation Recommendations

RFC1035 discusses domain name compression very briefly
and does not warn about some non-obvious mistakes that
the developers of TCP/IP stacks may make when imple-
menting this logic. The value of the compression pointer is
often unchecked in the code of TCP/IP stacks and, since it
is a 14-bit value, it can in theory point to 16383 (0x3fff)
bytes past the beginning of the DNS header (which makes
it quite unlikely that it points to a valid domain name in this
case). Simply put, if the packet is shorter than this value
(consider our example on Figure 9), the code might read
out of bounds of the packet. If the pointer points to itself
(e.g., we set the two relevant bytes to 0xc01e so that the
compression points again to 0xc0), we might cause the
parsing code to enter an infinite loop.

In fact, the devil is in the details, as RFC1035 states that “…
[in compression scheme] an entire domain name or a list of
labels at the end of a domain name is replaced with a pointer
to a prior occurrence of the same name.” This means that
there must be checks in place to ensure that a compression
offset in an incoming packet points “backwards” within the
packet and lands on a valid uncompressed domain name.
When such checks do not exist, it is possible to craft offset
values at which the offset will be pointing “forward,” allowing
the attackers to “hijack” the vulnerable DNS parser with
carefully crafted compression pointers and offsets.

RFC5625 gives examples of “invalid compression pointers”
such as “... those that point outside of the current packet
or that might cause a parsing loop”, mentioning them as
“examples of malformed packets that MAY be dropped”.
We recommend to drop such packets, as parsing them
may result in a variety of security issues, depending on
how a particular DNS message parser in a TCP/IP stack
is implemented.

Another typical mistake with compression pointers that we
have seen in the past (e.g., uIP and PicoTCP in AMNESIA:33)
is to check only that either of the two most significant bits
of a label length is 0b1. In this case, label lengths such as
0x80 and 0x40 will also be considered valid compression
pointers. This violates RFC1035 (high bit combinations 10

and 01 are reserved for special use and must not be pres-
ent in a domain name), and while this is not a vulnerability
per se, it may be beneficial to attackers. For example, an
intrusion detection system that has a rule for detecting
invalid compression offsets may not flag specific malformed
packets because 0x80 is not a compression pointer, but
some vulnerable implementations treat this value as such.

7. Mitigation
Recommendations
Complete protection against NAME:WRECK requires patch-
ing devices running the vulnerable versions of the IP stacks.
FreeBSD, Nucleus NET and NetX have been patched recently,
and device vendors using this software should provide their
own updates to customers.

However, patching devices is not always possible, and the
required effort changes drastically whether the device is a
standard IT server or an IoT device, as we discuss briefly
below.

• If security operators intend to patch vulnerable FreeBSD
servers or network appliances, they ‘just’ need to (1) iden-
tify what operating system is running on their devices,
(2) obtain the versions of currently installed packages
(such as dhclient) and (3) update the vulnerable systems.
These operations can even be automated and parallelized
in case the servers support remote management via
SSH, for instance. The official patch for the FreeBSD
vulnerability makes it very clear that an administrator
must simply run three commands to patch the system.
Usually, these servers are even deployed with high avail-
ability and load balancing, which means they can be
rebooted without major problems while other servers
provide a similar service.

• If security operators intend to patch vulnerable IoT
devices running vulnerable Nucleus NET- or NetX-based
firmware, the situation becomes more complex. First, the
user (and sometimes even the device vendor) is unsure
of what TCP/IP stack runs on a device, which means that

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc5625
https://tools.ietf.org/html/rfc1035
https://www.freebsd.org/security/advisories/FreeBSD-SA-20:26.dhclient.asc
https://cert-portal.siemens.com/productcert/pdf/ssa-185699.pdf
https://cert-portal.siemens.com/productcert/pdf/ssa-705111.pdf
https://github.com/azure-rtos/netxduo/commits/master/addons/dns/nxd_dns.c
https://www.freebsd.org/security/advisories/FreeBSD-SA-20:26.dhclient.asc
https://www.freebsd.org/security/advisories/FreeBSD-SA-20:26.dhclient.asc

FORESCOUT RESEARCH LABS 25

identifying vulnerable devices and issuing patches takes
longer. Second, even when security patches trickle down
from the stack vendor to the firmware of the device, it is
more difficult for the user to apply those patches because
the devices are not centrally managed (so patches must
be manually applied to each device), and sometimes they
cannot be taken offline due to their mission-critical nature
(such as medical devices or industrial control systems).

Even worse, we found that new firmware sometimes runs
unsupported versions of an RTOS that may have known
vulnerabilities. This is extremely concerning since assuming
that a new firmware is not vulnerable might lead to serious
blind spots in network risk assessment. An example of this
is the case of CVE-2016-20009, which affects older versions
of VxWorks that are not officially supported anymore, unless
under a paid extended support program. Even without having
a CVE assigned before NAME:WRECK, this issue was silently
fixed (a practice that is unfortunately common among
certain vendors) in at least some devices, such as Huawei
firewalls. The currently supported versions of VxWorks are
6.9 and 7. However, versions of the RTOS as old as 5.x, which
was released more than 20 years ago, still seem to be very
popular. There is supporting evidence that old versions of
the OS are still used. For instance, according to the results
of our Shodan searches, there are more than 4,000 results
for “vxworks5.4.2” and close to 1,500 for “vxworks5.5.1”.
Additionally, there are several devices with newly released
firmware based on old VxWorks, such as Dell PowerConnect
IT switches, Siemens SCALANCE ICS switches and Echelon
i.LON 600 IP routers for building automation. There are
also other vulnerabilities (unrelated to domain name pars-
ing) affecting VxWorks back to 5.5 (e.g., CVE-2020-11440)
that seem to be fixed only for versions 6.9 and 7. We have
not checked that any of these firmware are vulnerable. In
conversation with WindRiver, they informed us that older
versions may also be patched, but this depends on their
customer having special support agreements.

Given the challenges described above, we also recommend
the following mitigation strategy in case pathing is not
possible.

• Discover and inventory devices running the vulnera-
ble stacks. Forescout Research Labs has released an
open-source script that uses active fingerprinting to
detect devices running the affected stacks. The script
is updated constantly with new signatures to follow the
latest development of our research.

• Enforce segmentation controls and proper network
hygiene to mitigate the risk from vulnerable devices.
Restrict external communication paths and isolate or
contain vulnerable devices in zones as a mitigating con-
trol if they cannot be patched or until they can be patched.

• Monitor progressive patches released by affected device
vendors and devise a remediation plan for your vulnerable
asset inventory balancing business risk and business
continuity requirements.

• Configure devices to rely on internal DNS servers as
much as possible and closely monitor external DNS
traffic since exploitation require a malicious DNS server
to reply with malicious packets.

• Monitor all network traffic for malicious packets that
try to exploit known vulnerabilities or possible 0-days
affecting DNS, mDNS and DHCP clients. Anomalous and
malformed traffic should be blocked, or at least alert its
presence to network operators.

Following the anti-patterns described in Section 6, below
we discuss a general set of features of malicious packets
that may indicate exploitation attempts for the vulnerabil-
ities outlined in this report. TCP/IP stacks should properly
detect and drop malformed packets within their code, but
since this is not the case as exemplified by the multiple
vulnerabilities in this report, we recommend implementing
the rules outlined below in a network IDS.

• Invalid compression pointer. A compression pointer (a
byte with the 2 highest bits set to 1) must resolve to a
byte within a DNS record with the value that is greater
than 0 (it must not be a NULL terminator) and is less
than 64. The offset at which this byte is located must
be smaller than the offset at which the compression

RESEARCH REPORT | NAME:WRECK | Mitigation Recommendations

https://support.huawei.com/enterprise/en/doc/EDOC1100009531
https://support.huawei.com/enterprise/en/doc/EDOC1100009531
https://blogs.windriver.com/wind_river_blog/2018/07/vxworks-past-and-future/
https://www.shodan.io/search?query=vxworks5.4.2
https://www.shodan.io/search?query=vxworks5.5.1
https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=v7429
https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=v7429
https://www.pentestpartners.com/security-blog/pwning-a-siemens-scalance-ics-switch-through-arm-reversing/
https://www.echelon.com/software-downloads?ele=153-0594-01A
https://www.echelon.com/software-downloads?ele=153-0594-01A
https://nvd.nist.gov/vuln/detail/CVE-2020-11440
https://support2.windriver.com/index.php?page=cve&on=view&id=CVE-2020-11440
https://github.com/Forescout/project-memoria-detector

FORESCOUT RESEARCH LABS 26

RESEARCH REPORT | NAME:WRECK | Conclusions and Final Remarks

pointer is located. There is no valid reason for nesting
compression pointers. The code that implements domain
name parsing should check the offset not only with
respect to the bounds of a packet, but also its position
with respect to the compression pointer in question.
The little payload of 0x01 0x41 0xc0 0xe1 that we
demonstrated in Section 3 meets all these requirements
but can still lead to writing out of bounds or infinite loops.
Therefore, a compression pointer must not be “followed”
more than once. This might be difficult to implement
within the logic of TCP/IP stacks, as we have seen sev-
eral implementations using a check that ensures that a
compression pointer is not followed more than several
times. While this is not a perfect solution, it may still be
a practical one.

• Invalid domain label, name and resource data lengths.
A domain name length byte must have the value of more
than 0 and less than 64. If this is not the case, an invalid
value has been provided within the packet, or a value at an
invalid position might be interpreted as a domain name
length due to other errors in the packet (e.g., misplaced
NULL terminator or invalid compression pointer). The
characters of the domain label allowed for internet hosts
must strictly conform to RFC1035, and the number of
domain label characters must correspond to the value
of the domain label byte. The domain name length must
not be more than 255 bytes, and the NULL terminator
character must be present at the end of the domain
name. The value of the data length byte in response
DNS records (RDLENGTH) must reflect the number of
bytes available in the field that describes the resource
(RDATA). The format of RDATA must conform to the TYPE
and CLASS fields of the resource record.

• Invalid counts for Question/Answer/Authority/Addi-
tional records. The values of the bytes within a DNS
header that reflect the number of Question (QCOUNT),
Answer (ANCOUNT), Authority (NSCOUNT) and Additional
(ARCOUNT) must correspond to the actual data present
within the packet.

8. Conclusions and Final
Remarks

In previous research, we noticed that mis-implementations
of RFCs (sometimes because of ambiguities, as in the case
of the TCP Urgent pointer) are one of the most common
causes of vulnerabilities (what we called an “anti-pattern”)
and that similar constraints tend to lead to similar vulner-
abilities in TCP/IP stacks.

NAME:WRECK is a case where bad implementations of a
specific part of an RFC can have disastrous consequences
that spread across different parts of a TCP/IP stack and
then different products using that stack.

It is noteworthy that when a stack has a vulnerable DNS
client, there are often several vulnerabilities together, but the
message compression anti-pattern stands out because it
commonly leads to potential RCEs, as it is often associ-
ated with pointer manipulation and memory operations.
It is also interesting that simply not implementing support
for compression (as seen for instance in lwIP) is an effec-
tive mitigation against this type of vulnerability. Since the
bandwidth saving associated to this type of compression
is almost meaningless in a world of fast connectivity, we
believe that support for DNS message compression currently
introduces more problems than it solves.

While working on NAME:WRECK, we noticed that DNS client
implementations may be tested less rigorously than server
implementations for security issues. Because the clients
regularly communicate with a limited set of servers (instead
of a large set of clients), they may be more prone to security
vulnerabilities being detected later in the development cycle
and potentially remaining for longer in production software.

Besides disclosing vulnerabilities to vendors, thus help-
ing to secure impacted products, this research helps the
cybersecurity community in many other ways. Below, we
provide a list of lessons learned during our research and
some recommendations that we believe could prevent
vulnerabilities like NAME:WRECK from resurging in other
TCP/IP stacks.

https://tools.ietf.org/html/rfc1035

FORESCOUT RESEARCH LABS 27

• In Project Memoria, we learned that often the same
mistake (anti-pattern) leads to similar vulnerabilities in
different stacks. We urge developers of TCP/IP stacks
that have not (yet) been analyzed to take the anti-patterns
available in Section 6 (as well as the ones available in the
AMNESIA:33 report), check their code for the presence
of bugs and fix them.

• To help with the point above, we are releasing open-
source code developed for the Joern static analysis tool.
(The results of running this code are shown in Figure 11
for PicoTCP and Figure 12 for Nucleus NET). This code
is a formalization of the anti-patterns we identified and
allows researchers and developers to automatically
analyze other stacks for the presence of similar vul-
nerabilities.

RESEARCH REPORT | NAME:WRECK | Conclusions and Final Remarks

Figure 11 – Running the Joern script against vulnerable PicoTCP code

Figure 12 – Running the Joern script against vulnerable Nucleus NET code

https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://github.com/Forescout/namewreck
https://github.com/Forescout/namewreck
https://joern.io/

• The discussion about exploit detection in Section 7 allows
security engineers to develop detection signatures for
DNS vulnerabilities, which can be used for known and new
vulnerabilities. Alongside this report, we invite research-
ers, developers and vendors to reach out to us if they are
interested in a set of small proof-of-concept crashing
network packets for the identified anti-patterns. These
packets can be used to automatically test detection rules.

• We realized that many of the vulnerabilities exist because
RFC documents may be not detailed enough with respect
to possible security issues (e.g., what can go wrong
during implementation). To help prevent such issues

from reappearing in the future, we have submitted to
the IETF an informational RFC draft where we list the
anti-patterns of section 6 and how to avoid them while
implementing a DNS client or server.

We welcome collaboration with vendors, researchers and
the cybersecurity community as a whole under the scope
of Project Memoria. There is much work left to be done
to understand the real dangers behind the foundations of
IT/OT/IoT connectivity, and the more parties we can get
involved in finding vulnerabilities, fixing them and providing
higher-level solutions, the faster we can transition to a more
secure world.

RESEARCH REPORT | NAME:WRECK | Conclusions and Final Remarks

© 2021 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a Delaware
corporation. A list of our trademarks and patents can be found at https://www.forescout.com/
company/legal/intellectual-property-patents-trademarks. Other brands, products or service names
may be trademarks or service marks of their respective owners. Version 04_21

Forescout Technologies, Inc.
190 W Tasman Dr.
San Jose, CA 95134 USA

Toll-Free (U.S.) 1-866-377-8771
Tel (Intl) +1-408-213-3191
Support +1-708-237-6591

research@forescout.com toll free 1-866-377-8771

Don’t just see it.
Secure it.
Contact us today to actively
defend your Enterprise of Things.

TM

https://www.forescout.com/company/legal/intellectual-property-patents-trademarks
https://www.forescout.com/company/legal/intellectual-property-patents-trademarks

